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In Part I of this paper [2,4℄ we study this intended model, whih is used hereto establish the soundness of the logial rules. The entral fous of this PartII, however, is proof theory. We regularize and generalize the logis introduedin [1,10,11℄, and we prove a ut-elimination result for the �rst-order fragment,inluding ut-elimination for a fresh name quanti�er (f. Nominal Logi [18℄).A formula in our logi desribes a property of a partiular part of a onurrentsystem (a world) at a partiular time; therefore it is modal in spae as well as intime. In our sequents, formulas are indexed by the worlds they prediate over[21℄, so a sequent an talk about many distint worlds at one. Eah sequentinorporates also a �nite set of onstraints over the worlds, inluding proessredution and ongruene onstraints. In general, the onstraint struture anbe fashioned as an algebra [24℄; whih in our ase is a relatively omplexproess algebra.The fragment of our logi that deals with proess omposition is relativelystraightforward: omposition shows up in the logi as a tensor, whih is stronglyrelated to linear onnetives. The sequent-style presentation of this fragmentshould look relatively familiar, exept for the onstraints part. The relevantonstraints are essentially onstraints over a (onurreny) monoid, with somespei� interations with redution. Along these lines, we ould also easily addan expliit struture of loations to the proess alulus, and related logialoperators, as done in [10℄.Far less obvious is what to do about hiding of private resoures, whih isrepresented in �-alulus by the name hiding operator. The hiding of a namein a proess should orrespond, logially, to a \hiding quanti�er" that bindsa private name in a formula; suh a formula ould then desribe the use ofthat private name in the proess. The study of suh a quanti�er, from a logialpoint of view, was started in [5,1℄, and later independently in [11℄. Our urrentunderstanding is that it is best to deompose suh a hiding quanti�er into twooperators: a modal version of the fresh quanti�er of Gabbay and Pitts [14℄,and a logial operator, alled revelation [11℄, that relates to name hiding instrong analogy to the way tensor relates to proess omposition. A simpleombination of fresh quanti�ation and revelation then yields hiding, in theintuitive sense that if something is hidden, we an hoose to name it (revealit) by any name that is fresh.Many natural examples of use of our logi involve reursive formulas. Twotypial examples of reursion that attrat us in our ontext are: (1) a proesshaving an arbitrary number of hidden resoures, and (2) a proess generatingan in�nite supply of fresh names. Partiularly, the interation of reursion andfreshness is semantially quite hallenging, and was investigated in Part I.Struturally, our logi onsists of a olletion of left-right rules for logialoperators, inluding essentially the standard rules of lassial sequent alulus,plus the ones for temporal and spatial operators. In addition, there are speial2



hSi�� � Sequents, of the formhSiu1 : A1; : : : ; un : An � v1 : B1; : : : ; vm : BmAi; Bi Formulasui; vj Indexes, members of a proess algebra (the worlds)S �nite set of onstraints (e.g., equations, redutions)Fig. 1. Sequents.rules about the worlds: they add meaning to the logial operators, allowingus to apture deep properties of proess aluli without interfering very muhwith the ore left-right rules.We highlight here the left and right rules for omposition, AjB, whih inludemany of the interesting features of our sequents.Sequents (Figure 1) have the form hSi� � � , where hSi is a �nite set ofonstraints, and � , � are multisets of indexed formulas. Constraints inludeequality onstraints, u := v, stating that u and v represent struturally on-gruent proesses. [X and Y not free in the onlusion℄hS; u := X jY i�; X : A; Y : B � �hSi�; u : AjB � � (jL)hSi� � v : A;� hSi� � t : B;� u :=S vjthSi� � u : AjB;� (jR)The (jR) rule says: if we an show that index v satis�es formula A (i.e, thatA holds at world v, written v : A), and that t satis�es B, and if we anshow from the onstraints in S that u is struturally ongruent to vjt, thenwe an onlude that u satis�es AjB. Hene, the reading of this logial rulesinorporates muh of the intended satisfation semantis [21℄. The (jL) rulefeatures the assumption \X and Y not free in the onlusion (of the rule)".This assumption means, in partiular, that X and Y are ompletely generiand unonstrained variables. A reading is: to show that u : AjB entails �,we must show that for an arbitrary deomposition of u as X jY , we have that
X : A and Y : B entail �.Composition also has a number of \rules about the world", as mentionedabove. Here is a simple one:hS; u := 0i� � � ujv :=S 0hSi� � � (Sj0)Note that these world rules do not involve the logial onnetives (we have� � � above and below), and instead a�et the hSi part. In most proess3



aluli we have that if ujv is struturally ongruent to 0 then both u and v arestruturally ongruent to 0. This property does not derive from (jL) and (jR),but is embedded in (Sj0). The rule reads as follows: if we an already inferfrom the S part of the onstraints that ujv := 0, and we have an additionalonstraint that u := 0, that onstraint is redundant and we an remove it. Inthis style, we an inorporate many peuliar properties of proess aluli asworld rules; many suh rules analyze the onsequenes of an equation betweentwo spatial operators (above, j vs. 0), and are listed in Figure 12. All suhrules have a similar reading in terms of eliminating \redundant" onstraints.Beause of the regular left-right struture of our ore rules, ut elimination fallslargely along preditable lines; the indexes do not hinder, and rules suh as(Sj0) an be dealt with separately. The main diÆulty is in the ut eliminationase for the freshness quanti�er. As in Nominal Logi, the result depends onan \equivariane" property of the logi [18℄, whih is used to perform an �-onversion of fresh names over a whole derivation. Equivariane is embedded,in our ase, in the (TL/TR) rules in Figure 7. Expressing these rules in thegeneral ase of open formulas, requires introduing expliit transpositions overformulas, whih entail some tehnial ompliations.Related Work A logi for a proess alulus inluding a tensor operatorand a hiding quanti�er was developed by Lu��s Caires in [5,1℄, but a satisfa-tory semanti treatment for the latter onnetive was not ahieved before theontributions of [11,2℄. Andy Gordon was a oauthor with Lua Cardelli ofinitial versions of spatial logis for the Ambient Calulus [10,11℄, whih alsoinvestigated onnetions with linear logi. The present paper ontains the �rstpresentation of suh a logi as a proper sequent alulus. Moreover, we nowtarget the logi towards a more standard �-alulus.The �rst main di�erene between our logi and standard logis of onurreny(e.g. [15℄) is the presene in our ase of a tensor operator that orrespondsto proess omposition. Usually, those other logis require formulas to denoteproesses up to bisimulation, whih is diÆult to reonile with a tensor oper-ator that an make distintions between bisimilar proesses (however, suh anoperator was antiipated by Dam [12℄). In our ase, we only require formulas todenote proesses up to strutural equivalene, so that a tensor operator makeseasy sense. Sangiorgi, Hirshko� and Lozes have shown, for a losely relatedlogi, that the equivalene indued by the logi is then essentially struturalequivalene [20,16℄. Compositional proof systems for behavioral equivaleneson the �-alulus have also been reently proposed by Dam [13℄.The work of Gabbay and Pitts on the freshness quanti�er [14℄ has beomeentral to our logi. The work of O'Hearn and Pym on Bunhed Logis [17℄and of Reynolds on Separation Logi [19℄ is losely related to ours, at least inintent. Spatial logis for trees and graphs have also been investigated in [9,7℄.4



The style in whih our logi is formalized is an extension of work by AlexSimpson [21,22℄, and is also related, at least super�ially, to labeled dedutivesystems [24℄. The use of formal transpositions, adopted here as a tehniquefor manipulating freshness onstraints, turned out to be useful also in the set-ting of programming languages for semi-strutured data [8℄. A deidable andomplete propositional fragment of a related logi has been reently investi-gated [6℄.Struture of the paper In Setion 2 we reall the syntax and semantisof our logi of Part I. In Setion 3 we present the various ingredients thatonstitute the proof system. In Setion 3.1 we introdue the �-algebra thatis used in the onstraints and indexes of our sequents. A �-algebra is anabstration of �-aluli, inorporating most of the harateristi propertiesof omposition and hiding. In Setion 3.5 we introdue our sequent alulus,whih an be shown sound by an interpretation in the model of Part I [2℄. InSetion 4 we show how reursive properties an be fully handled inside ourlogi. In Setion 5 we investigate proof theory, and in partiular ut eliminationfor the �rst-order fragment of our logi. In Setion 6 we go through a set ofbasi examples, to illustrate the expressive power of the logi. In the Appendix,we ollet proofs of results.2 The Logi and its SemantisIn this setion, we review the syntax and semantis of our spatial logi foronurreny. Our intended model [4℄ is a �xed nominal proess alulus (we useasynhronous �-alulus) over a set of pure names � ; let P be the olletionof suh proesses. On P is de�ned the relation � of strutural ongruene,that equates proesses that possess the same spatial struture, and the binaryrelation ! of redution, that aptures the dynami behavior of proesses. Aproperty is a set of proesses; a subset of P. Then, a formula of our logidenotes a property, namely, it denotes the olletion of proesses satisfyingthat formula.Given the sets V and Z of name variables and propositional variables, re-spetively, formulas are de�ned in Fig. 2. They inlude lassial propositionalonnetives, F, ^, ), and the basi spatial operators: AjB (the tensor, rep-resenting the parallel omposition of proesses), 0 (the unit of the tensor,representing the olletion of void proesses), and A . B (the linear implia-tion assoiated with the tensor). This last operator orresponds to ontext-system spei�ation of proesses, whih are the onurreny-theory equivalentof pre/post onditions.First-order quanti�ation allows us to quantify over the set of pure names5



m;n;p ::= Name Terms (m;n;p 2 N )x Name variable (x 2 V)(m$n)p Transposition termA;B ::= Formulas (A;B 2 �)F False(m$n)A TranspositionA ^B ConjuntionA) B Impliation0 VoidAjB CompositionA . B Guarantee
nrA Revelation
n�A Hiding
mhni Message�A Next8x:A First-order universal quanti�ationIx:A Freshness quanti�ationX Propositional variable (X 2 X )8X:A Seond-order universal quanti�ationFig. 2. Formulas� of the �-alulus. Pure names (n;m; p 2 �) are represented in our logiby name terms: a name variable x denotes some name, while a transpositionterm (m$n)p denotes the name obtained by applying the transposition ofthe names denoted by the name terms m and n to the name denoted by thename term p. The use of name terms in formulas and the presene of a expliittransposition formula (m$n)A are some onvenient additions we introduehere to the basi logi of [4,3℄ (f., transposition types in [8℄). We do notallow pure names to appear in the syntax of formulas: only name variablesand their transpositions are used there. As disussed below, these additionsan be integrated in a fairly straightforward way into the semanti frameworkalready developed in [4℄.Name hiding indues a pair of adjunt logial operators. The formula nrA6



means that a hidden name, denoted by the name term n, exists in a restritedsope that satis�es property A. It is mathed by a �-alulus term (�n)uprovided that u satis�es A and n denotes the name n (see the semanti lausefor nrA in Fig. 3, inferene rule for (rR) in Fig. 8, and the example inSetion 6.5; see [11,4℄ for further disussion.) The formula A�n is the logialadjunt of nrA, indiating that A an be satis�ed by a proess after hidingthe name denoted by n.The notion of fresh name is introdued by a quanti�er Ix:A; a proess Psatis�es Ix:A if P satis�es A for some name fresh in the proess P and inthe formula Ix:A. Ix:A is de�ned along the lines of the freshness quanti�erof Gabbay-Pitts [14,18℄, and its semantis is designed to be ompatible withreursive formulas.A logial operator nhmi allows us to assert that a proess onsists preiselyof a message m over a hannel n, giving us some minimal power to observeits behavior. A next-step temporal operator, �A, allows us to talk about aproess after a single (unspei�ed) redution step. Finally, we have a seond-order quanti�er and related propositional variables.In 8x:A, Ix:A (and 8X:A), the variables x (and X) are bound with sopethe formula A. We assume de�ned on formulas the standard relation �� of�-onversion (safe renaming of bound variables), but we never impliitly takeformulas \up to �-onversion": our manipulation of variables via �-onversionsteps is always quite expliit. The set fv(A) of free name variables in A, andthe set fpv(A) of free propositional variables in A, are de�ned in the usualway. Then, we de�ne the set of logially free variables of a formula A bylfv(A)M=fv(A)[ fpv(A). If m is a name term and A is a formula then Afx mgdenotes the formula obtained by replaing of all free ourrenes of x in A bythe name term m, renaming bound name variables as needed to avoid aptureof name variables ourring in the name term m. We also de�ne the set ft(A)of free terms in A, to be the set of all maximal name terms in A that do notontain ourrenes of variables bound in A; and the set of logially free termsof a formula A by lft(A)M=ft(A) [ fpv(A).We now review the semantis of our logi; if needed, further details an befound in [4℄. The denotation of formulas is de�ned in terms of sets of proessesthat satisfy ertain natural losure onditions. These onditions are motivatedby the following fats. First, we expet satisfation to be losed under stru-tural ongruene (proesses with the same spatial struture must satisfy thesame formulas). Seond, a property should depend only on a �nite set of rele-vant names (related to the denotation of the free name variables of a formula);suh a set of names is alled the support of the property. The olletion of allproperties has the struture of a Boolean algebra under set inlusion, so wenaturally get propositional onnetives in the logi. The olletion of all prop-erties has also the struture of a ommutative quantale, due to the parallel7



omposition operator over proesses; this indues the basi spatial onnetivesof the logi. Other proess operators indue further spatial onnetives.The support of a set of proesses is de�ned using name transpositions. Atransposition fm$ng ats on a proess P by swapping all ourrenes (freeand bound) of the names n and m in the proess P . From [4℄, we reallDe�nition 2.1 (PSet) A property set is a set of proesses 	 suh that(1) For all Q, if P 2 	 and P � Q then Q 2 	.(2) There is a �nite set of names N suh that, for all n;m 62 N , if P 2 �then Pfn$mg 2 �.We denote by P the set of all Psets. Every Pset � 2 P has a least support [18,4℄,that we denote by supp(�). Hene, in our semantis, the denotation of anyformula A is given by a Pset JAK 2 P. Sine a formula A may ontain freeourrenes of propositional and name variables, its denotation depends onthe denotation of suh variables, whih is given by a valuation. A valuationv is a �nite mapping assigning to eah name variable in its domain a namein � (the set of �-alulus pure names), and eah propositional variable in itsdomain a Pset in P. The appliation of transpositions to Psets and valuationsis de�ned pointwise [4℄. The following semanti haraterization for the \free"names of a formula A under a valuation [4℄ is also useful.De�nition 2.2 (Free Names under Valuation) If A is a formula, and va valuation for A, we de�ne the set fnv(A) of free names of A under v byfnv(A)M=[fv(x) j x 2 fv(A)g [[fsupp(v(X)) j X 2 fpv(A)gIntuitively, fnv(A) is basially fn(v(A)) exept that we set fn(X)M=supp(v(X))for any X 2 fpv(A), hene fnv(A) = fn(A) for losed A. The set fnv(A) isuseful in the de�nition of the semantis of the fresh name quanti�er, where thequanti�ation witness must be fresh with respet to the property set denotedby a formula that in general may ontain free ourrenes of propositional(and name) variables.The semantis of formulas is de�ned in Fig. 3. The denotation mapping J�Kvsatis�es ertain fundamental properties, listed in the next theorem.Theorem 2.3 For all formulas A and valuations v(1) JAKv 2 P with supp(JAKv) � fnv(A).(2) For all transpositions � , �(JAKv) = JAK�(v).(3) Let M = fnv(Ix:A) [ fn(P ). If P 2 JAKv[x p℄ for some p 62 M , thenP 2 JAKv[x p℄ for all p 62M .Proof. (1-2) By indution on the struture of the formula A; a straightforwardadaptation of the proof of Theorem 4.21 in [4℄. (3) A onsequene of (2).8



JxKv M= v(x)J(m$n)pKv M= fJmKv$JnKvgJpKvJFKv M= ;J(m$n)AKv M= fJmKv$JnKvgJAKvJA ^BKv M= JAKv \ JBKvJA) BKv M= fP j if P 2 JAKv then P 2 JBKvgJ0Kv M= fP j P � 0gJAjBKv M= fP j Exists Q;R: P � QjR and Q 2 JAKv and R 2 JBKvgJA . BKv M= fP j Forall Q: if Q 2 JAKv then P jQ 2 JBKvgJnrAKv M= fP j Exists Q: P � (�JnKv)Q and Q 2 JAKvgJA�nKv M= fP j (�JnKv)P 2 JAKvgJmhniKv M= fP j P � JmKvhJnKvigJ8x:AKv M= Tn2�JAKv[x n℄JIx:AKv M= Sn 62fnv(Ix:A)(JAKv[x n℄ n fP j n 2 fn(P )g)J�AKv M= fP j Exists Q: P ! Q and Q 2 JAKvgJXKv M= v(X)J8X:AKv M= T	2P JAKv[X 	℄Fig. 3. Denotation of terms and formulas.
3 The Proof SystemIn this setion, we present a sequent alulus based proof system for ourlogi. The inferene rules of our system follow the pattern one expets from aGentzen-style sequent alulus, that is, a system where there is a symmetripair of left and right introdution rules for eah logial onnetive. As dis-ussed in the introdution, sequents have the form hSi� � � , where hSi isa �nite set of onstraints, and �, � are multisets of index-tagged formulas.Indexes denote the worlds (the proesses) of our modal logi. Suh indexes areelements of the term �-algebra. 9



3.1 �-algebrasWe now introdue �-algebras, and onstraint theories over the term �-algebra.A �-algebra is a sorted algebra, with a sort for names, a sort for proesses,and a sort for olletions of proesses (properties), and equipped with thebasi proess operations of omposition, name hiding and name transposition.Hene, many proess aluli are �-algebras, in partiular the asynhronous�-alulus A� whih is the intended model of our logi.De�nition 3.1 (�-algebra) A �-algebra is a struture� = hL;P; C; 0; j;�; ($)L; ($)P ; ($)Cisuh that L is a ountable set of labels (`), P is the set of proesses (P;Q;R),C is a olletion of properties (F;G), and� 0 (void) is a distinguished proess in P� �j� (omposition) is an operation P � P ! P� (��)� (name hiding, a.k.a. restrition) is an operation L � P ! P� (�$�)L� (transposition on labels) is an operation L � L� L ! L� (�$�)P� (transposition on proesses) is an operation L � L� P ! P� (�$�)C� (transposition on properties) is an operation L � L� C ! CWe refer to the L part of a �-algebra � by �L, and likewise for the remainingomponents (e.g., �P). For example, the asynhronous �-alulus A� is the�-algebra where A�L is the set of �-alulus names, A�P is the set of �-alulus proesses, and (m$n)P denotes the proess fm$ng�P obtained byswapping the names m;n in the proess P .Of partiular interest to us is the term �-algebra, whih supports the synta-tial manipulation of (shemati) proesses and names in a general way.De�nition 3.2 (Term �-algebra) Consider given a set V of names vari-ables, a set Z of proess variables, and a set X of propositional variables.The term �-algebra is the free �-algebraP = hN ; I;F ; 0; j;�; ($)N ; ($)I; ($)Fiwhere N is the set of all terms freely built from the variables in V and nametransposition, F is the set of all terms freely built from the variables in X andname transposition, and I is the set of all terms freely built from the variablesin Z, name terms in N , and the proess operations 0; j;� and ( $ )I. Inthe term �-algebra, the labels N are alled name terms, the proesses I arealled indexes, and the properties F are alled propositional terms. We use10



the meta-variablesx; y; z 2 V (Name Variables)
X ; Y ; Z 2 Z (Proess Variables)X;Y;Z 2 X (Propositional Variables) m;n;p 2 N (Name Terms)u; v; t 2 I (Indexes)F;G;H 2 F (Propositional Terms); Æ 2 G M=F [N � 2 T M=I [ GThe elements of the term �-algebra that we have alled indexes denote el-ements of the intended proess algebra (proesses, the worlds of our modallogi), while the name terms denote the pure names used in proesses. For ex-ample, x, (x$y)z and (x$((y$z)x))z are name terms, while X , (x$y)Xand X j(�(x$y)z)Y are indexes. N.B., in the term �-algebra, (m$n)P (re-spetively, (m$n)p) is a partiular index (respetively, name term) in whihtransposition is interpreted as a formal operation.A propositional term F denotes a property (a olletion of proesses). Theintention is that the proess denoted by the index u belongs to the propertydenoted by (n$m)F whenever the proess denoted by (n$m)u belongs tothe property denoted by F .De�nition 3.3 (Interpretation) Given any �-algebra �, an interpretationJ of the term �-algebra into � is a triple of mappings JL : V ! �L andJP : Z ! �P , JC : X ! �C.Every interpretation J extends to the unique homomorphism Ĵ : P ! � of�-algebras in the standard way. Note that the term � algebra an be straight-forwardly interpreted into any nominal aluli (e.g., the �-alulus, the ambi-ent alulus), by mapping the (formal) operators of the term �-algebra intothe orresponding proess model operators.De�nition 3.4 (Algebrai free variables) Given an index, name term, orpropositional term �, we denote by afv(�) its set of algebrai free (name, proessand property) variables, de�ned simply as the olletion of all the variables inV, Z and X ourring in suh terms.Remark 3.5 A variable x is algebrai free, in, e.g., the index (�x)0, while thename n is not free in the usual sense in the �-alulus proess (�n)0. In parti-ular, a �-substitution ats on all algebrai free variables of indexes and nameterms. E.g., if uM=(�x)(X jY ), then ufx ygfX (�x)Z g = (�y)((�x)Z jY ).De�nition 3.6 (�-substitution) A �-substitution is an interpretation fromP into P.Every �-substitution � extends to the homomorphism �̂ : P ! P of term�-algebras that ats as a syntati substitution on indexes. We denote byfx ng the �-substitution that maps x into n and ats like the identity else-11



where, and likewise for fX ug and fX Fg. If IL is a mapping V ! N thenwe note by ILfx ng the mapping I 0L suh that I 0L(z)M=I(z) for z 6= x andI 0L(x)M=n. Likewise, if J is an interpretation, we write J fx ngfX ug forthe interpretation that behaves like J exept that it maps x to n and X to u.Usually, we write just � for the homomorphi extension �̂ of a �-substitution�.3.2 Constraint theoriesThe worlds of our logi relate to eah other both by spatial and temporal on-straints: spatial onstraints express that the proesses denoted by the equatedindexes have the same spatial struture (f. �-alulus strutural ongruene),while temporal onstraints express that a proess has a redution to anotherproess (f. �-alulus redution). Intuitively, a onstraint theory de�nes alass of models for the spatial logi, namely those models that satisfy all of itsspatial and temporal onstraints.De�nition 3.7 (Constraint and onstraint theory) A onstraint  is ei-ther an index, name or property equation, a redution, a name or propertyapartness, de�ned by ::= Constraintsu := v Index equation (u; v 2 I)
n
:= m Name equation (n;m 2 N )

m#n Name apartness (m;n 2 N )F := G Property equation (F;G 2 F)
m#F Property apartness (m 2 N ; F 2 F)u! v Redution (u; v 2 I)A onstraint theory is a �nite set of onstraints.An equation u := v states that the indexes u and v denote struturally on-gruent proesses, while a redution u! v asserts that the proess denoted bythe index u redues to the proess denoted by the index v.In order to handle freshness onstraints expliitly, we also introdue apartnessonstraints: m#n meaning that the name terms m and n denote distintnames, and m#F meaning that the name term m denotes a name distintfrom any name in the (�nite) support of the property (set of proesses) denotedby the propositional term F (so the name n is fresh in suh a property).A onstraint F := G asserts that the propositional terms F and G denote thesame property. 12



(Basi)� := �0 2 S ) � :=S �0 (Basi Equ)# 0 2 S ) #S 0 (Basi Apart)u! v 2 S ) u!S v (Basi Red)(Spatial)uj0 :=S u (Sp Void)ujv :=S vju (Sp Par Comm)(ujv)jt :=S uj(vjt) (Sp Par Asso)(�n)0 :=S 0 (Sp Res Void)(�n)(�n)u :=S (�n)u (Sp Res Res)(�m)(�n)u :=S (�n)(�m)u (Sp Res Comm)(�n)(uj(�n)v) :=S ((�n)u)j(�n)v (Sp Res Par)(Congruene)� :=S � (Cong Re)� :=S �0 ) �0 :=S � (Cong Sym)� :=S �0; �0 :=S �00 ) � :=S �00 (Cong Trans)u :=S v ) ujt :=S vjt (Cong Par)u :=S v;m :=S n) (�m)u :=S (�n)v (Cong Res)
m

:=S n; r :=S q;  :=S 0 ) (m$r) :=S (n$q)0 (Cong Swap)#S 0; r :=S r
0;q :=S q

0 ) (r$q)#S (r0$q
0)0 (Cong Apart)Fig. 4. Closure of onstraint theories (Basi, Spatial and Congruene).De�nition 3.8 (Closure of a onstraint theory) Given a onstraint the-ory S, the relations:=S � I � I Index Equality:=S � N �N Name Equality#S � N �N Name Apartness :=S � F �F Property Equality#S � N �F Property Apartness!S � I � I Index Redutionare indutively de�ned by the set of losure rules in Figs. 4-5.Closure rules axiomatize some basi strutural properties of our intendedmodels. For instane, rules in (Spatial) haraterize the basi properties ofstrutural ongruene; in partiular (Sp Res Par) expresses the usual nameextrusion property of �-alulus. 13



(Apartness)
m#S ;n#S  ) (m$n) :=S  (Swap Fresh)
m#S n) n#S m (Apart Sym)#S Æ;  :=S 0; Æ :=S Æ0 ) 0#S Æ0 (Cong Apr)(Transposition)(n$m)0 :=S 0 (Swap Void)(n$m)(ujv) :=S (n$m)uj(n$m)v (Swap Par)(n$m)(�p)u :=S (�(n$m)p)(n$m)u (Swap Res)(n$m)(p$q) :=S ((n$m)p$(n$m)q)(n$m) (Swap Swap)(n$m)(n$m)� :=S � (Swap Inv)(n$n)� :=S � (Swap Id)(m$n)m :=S n (Swap App)u :=S (�n)t; u :=S (�m)v ) (n$m)u :=S u (Swap Erase)(Redution)u!S t; v :=S u; t :=S w ) v !S w (Red Cong)u!S t) ujv !S tjv (Red Par)u!S t) (�n)u!S (�n)t (Red Res)u!S t) (n$m)u!S (n$m)t (Red Transp)Fig. 5. Closure of onstraint theories (Apartness, Transposition and Redution).Remark 3.9 Let u be the index (�x)X j(�x)Z and v the index (�x)(X j(�x)Z ).Let I be any interpretation into A�, we then have I(u) = (�n)P j(�n)Q, forsome proesses P and Q and name n. Sine name n is not free in the pro-ess (�n)Q (in the usual �-alulus sense), by the sope extrusion axiom ofstrutural ongruene we have (�n)P j(�n)Q � (�n)(P j(�n)Q) = I(v). Thisshows the soundness of the (Sp Res Par) axiom with respet to our intendedinterpretation.Rules in (Transposition) and (Apartness) express the ation of transpositionson indexes and name terms. The notation � is used to represent the ap-pliation of the transposition � to some (index or name term) , and � torepresent the appliation of an arbitrary sequene of transpositions (that is,a permutation) to the element . For example, (Swap Erase) expresses thattransposition of names whih are not free in a proess at as the identity:in fat, if u :=S (�n)t holds then n denotes a name whih is not free in theproess denoted by the name term u. We write S ` n#m to denote that

n#S m, and likewise for the other kinds of onstraints. We have the following14



basi propertiesLemma 3.10 For all onstraint theories S and S 0, for all onstraints  and0, for all �-substitutions �, we have(1) S `  implies S [ S 0 ` .(2) If S `  and S;  ` 0 then S ` 0.(3) If S `  then �(S) ` �().In the remainder of this setion, we present some basi onepts related tothe semantis of onstraint theories. An interpretation for a onstraint theoryassigns an appropriate denotation to all propositional, proess and name vari-ables ourring on it. As in Part I, we are interested on a version of the spatiallogi for the asynhronous �-alulus (we use the standard notations � and!for asynhronous �-alulus strutural ongruene and redution). Therefore,interpretations that onern us here map proess variables into A� proesses,name variables into A� names, and propositional variables into property sets.For onveniene, we present A� as a �-algebraA� = h�;P;P; 0; j;�; ($)�; ($)P ; ($)Piwhere � is the set of pure names, P is the set of proesses, and P is theolletion of all Psets (De�nition 2.1). We now de�neDe�nition 3.11 (A�-interpretation) A A�-interpretation J is an inter-pretation of the term �-algebra into A�.As notied above, we an then see that an A�-interpretation J ontains avaluation, so that it also makes sense to write JAKJ for the denotation of theformula A under the valuation determined by J . Also, for a name term n, wean verify that J (n) = JnKJ .De�nition 3.12 (Satisfation and Validity) The relation of satisfationbetween an A�-interpretation J and onstraints is de�ned thus:1. J sat m
:= n , JmKJ = JnKJ2. J sat u := v , J (u) � J (v)3. J sat u! v , J (u)! J (v) 4. J sat m#n , JmKJ 6= JnKJ5. J sat F := G , JF KJ = JGKJ6. J sat n#F , JnKJ 62 supp(JF KJ )J satis�es the onstraint theory S if J satis�es all onstraints in S. A on-straint S `  is valid if every interpretation that satis�es S also satis�es .The following lemma establishes the soundness of the losure of onstrainttheories.Lemma 3.13 (Soundness) Let S be a onstraint theory and J a A�-inter-pretation that satis�es S. For all name terms m and n, for all indexes u and15



t, and for all propositional terms F and G, we have:1. If m
:=S n then JmKJ = JnKJ2. If u :=S t then J (u) � J (t)3. If u!S t then J (u)! J (t) 4. If m#S n then JmKJ 6= JnKJ5. If F :=S G then J (F ) = J (G)6. If m#S F then JmKJ 62 supp(JF KJ )Proof. By indution on the derivations of  :=S 0, n#S m, m#S F , and u!Sv using well-known properties of strutural ongruene, name transpositionand redution of the asynhronous �-alulus.3.3 SequentsHaving introdued indexes and onstraint theories, we an now de�ne thesequents of our logi. First, a ontext is a �nite multiset of indexed formulasof the form u : A where u is an index (De�nition 3.2) and A is a formula. Weuse �;� to denote ontexts. ThenDe�nition 3.14 (Sequent) A sequent is a judgment of the form hSi� � �where S is a onstraint theory, and � and � are ontexts.As usual, the right ontext � is interpreted as the disjuntion of its formu-las, the left ontext � is interpreted as the onjuntion of the formulas in it.De�ning ontexts as multisets allows for the impliit use of exhange (butnot ontration!) in proofs. We write � �� �0 if �0 is obtained from � by�-onverting some formulas in it.De�nition 3.15 (Variables in sequents) The set of free (name, proess,and propositional) variables of a ontext � is given bylfv(�)M=[fafv(u) [ lfv(A) j u : A 2 �gThe set of free (name, proess, and propositional) variables in a sequent hSi��� is given by fv(hSi� � �)M=afv(S) [ fv(�) [ fv(�)N.B.: name variables x our both in onstraints and in formulas A; proessvariables X our only in indexes; propositional variables X also may our informulas and onstraints. Given a A�-interpretation J and a ontext �, wesay that J satis�es all of � if J (u) 2 JAKJ for all u : A 2 �. Likewise, we saythat J satis�es some of � if J (u) 2 JAKJ for some u : A 2 �. Hene we haveDe�nition 3.16 (Valid Sequent) A sequent hSi� � � is valid if for allinterpretations J suh that J satis�es S, and J satis�es all of �, then Jsatis�es some of �. 16



A �S A0 if A �� A0(n$m)0 �S 0(n$m)F �S F(n$m)(A ^B) �S (n$m)A ^ (n$m)B(n$m)(A) B) �S (n$m)A) (n$m)B(n$m)(AjB) �S (n$m)Aj(n$m)B(n$m)(A . B) �S (n$m)A . (n$m)B(n$m)�A �S �(n$m)A(n$m)(Ix:A) �S Ix:(n$m)(Afx (n$m)xg) if x 62 fv(m) [ fv(n)(n$m)(8x:A) �S 8x:(n$m)(Afx (n$m)xg) if x 62 fv(m) [ fv(n)(n$m)(8X:A) �S 8X:(n$m)AfX (n$m)Xg(n$m)(prA) �S ((n$m)p)r (n$m)A(n$m)(A� p) �S (n$m)A�((n$m)p)(n$m)(phqi) �S ((n$m)p)h(n$m)qi
nrA �S mrA if n

:=S mA�n �S A�m if n
:=S m

nhmi �S phqi if m
:=S p and n

:=S qF �S G if F :=S GFig. 6. Formula Equivalene.For example, if A and B are losed formulas, the sequent hi X : A � X : B isvalid if and only if every proess that satis�es the formula A also satis�es theformula B.3.4 AssertionsAn assertion A �S B states that, under any interpretation that satis�es allonstraints in S, the formulas A and B denote the same property.De�nition 3.17 (Equational equivalene of formulas) Equational equiv-alene of formulas, written �S, is the least ongruene relation on formulasindutively de�ned in Figure 6.We all a formula normalized if all ourrenes of transpositions our at theterm level (so it ontains no subformula of the form (n$m)A). In general,given a onstraint theory S, any formula A an be onverted into a semanti-17



ally equivalent but normalized formula A0, using the equations in Figure 6 asleft-to-right rewrite rules. We then de�neDe�nition 3.18 (Normalized) We assert A +S B whenever A �S B andB is normalized.Note that if A +S B and A +S B0, we must have B +S B0. We also use thenotation � +S �0 to denote that the sequent ontext �0 results from normalizingthe sequent ontext � under the onstraints S. Thus, we also all a sequentor sequent ontext normalized whenever all formulas in it are normalized.MoreoverLemma 3.19 For all formulas A;B and onstraint theory S we have(1) For every �-substitution �, if A �S B then �(A) ��(S) �(B).(2) If A �S B then there is A0 suh that A +S A0 and B +S A0.(3) If A �S B and A +S A0 for formula some A0, then also B +S A0.Proof. (1{3) Indution on the derivation of A �S B.An assertion n#S A states that, under any interpretation that satis�es allonstraints in S, the name denoted by the name term n is fresh in theproperty denoted by the formula A. More preisely, given a formula A withlft(A) = fm1; : : : ;mkg, and a onstraint theory S, we write n#S A as anabbreviation for the set (understood as the onjuntion) ontaining the on-straints n#S m1; : : : ;n#S mk. N.B.: eah mi is either a name term or a propo-sitional variable. The following fats are important:Lemma 3.20 For all normalized formulas A and name terms p; q,(1) Let p#S A and q#S A. Then (p$q)A +S A.(2) Let p#S Ix:A and q#S Ix:A. Then (p$q)Afx pg +S Afx qg.Proof. Follows from Lemma 8.2 in appendix. .We an verify that the relations �S (between formulas), and #S (betweenname terms and formulas) de�ned above are sound with respet to their in-tended interpretations.Lemma 3.21 (Soundness) Let J be a A�-interpretation. For all formulasA, B and name terms n,(1) If J satis�es S and A �S B then JAKJ = JBKJ .(2) If J satis�es S and n#S A then JnKJ 62 fnJ (A).(3) If J satis�es S and n#S A then JnKJ 62 supp(JAKJ ).Proof. (1) Indution on the derivation of A �S B. (2) By Lemma 3.13. (3) By(2) and Theorem 2.3(1).
18



[A is an atomi formula ℄hSi�; u : A � u : A;� (Id) hSi� � u : A;� hSi�; u : A � �hSi� � � (Cut)hSi�; u : A; u : A � �hSi�; u : A � � (CL) hSi� � u : A; u : A;�hSi� � u : A;� (CR)(n$m)A �S A0hSi�; u0 : A0 � � (m$n)u :=S u0hSi�; u : A � � (TL) (n$m)A �S A0hSi� � u0 : A0;� (m$n)u :=S u0hSi� � u : A;� (TR)hSi�; u : F � � (FL) hSi� � �hSi� � u : F;� (FR)hSi�; u : A; u : B � �hSi�; u : A ^B � � (^L) hSi� � u : A;�hSi� � u : B;�hSi� � u : A ^B;� (^R)hSi� � u : A;� hSi�; u : B � �hSi�; u : A) B � � ()L) hSi�; u : A � u : B;�hSi� � u : A) B;� ()R)Fig. 7. Strutural and Propositional Rules.3.5 Inferene RulesWe now present the set of inferene rules of our base proof system S. Infer-ene rules may have for premises not just sequents but also assertions overthe losure of the onstraint theory S that appears in the onlusion. Suhassertions are of the form u :=S v (mostly in the rules for spatial onnetives),A �S B (in (TL) and (TR) rules), u!S v (in the temporal rules) or n#S A(in the freshness rules).The rules in the identity, strutural and propositional group (see Figures 7)follow the standard format. We use the simplest possible form for the (Id)axiom, where the formula A is required to be atomi. Reall that in generala formula is alled atomi if it is not built from a logial onnetive at thetop level, in our ase, if it is either a propositional variable X or a messagenhmi. This is without loss of generality, sine the general form of (Id) wherethe identi�ed formula an be an arbitrary one is admissible (Lemma 5.5). Weinlude expliit ontration rules (CL) and (CR); weakening is admissible, andexhange may be dealt with impliitly, sine sequent ontexts are multisets.The transposition rules (TL) and (TR) apture the property of invarianeof the semantis under transposition of names (Theorem 2.3). They also in-orporate the theory of equality of indexes and names terms de�ned by the19



hS; t := 0i� � �hSi�; t : 0 � � (0L) u :=S 0hSi� � u : 0;� (0R)[X and Y not free in the onlusion℄hS; u := X jY i�; X : A; Y : B � �hSi�; u : AjB � � (jL) hSi� � v : A;�hSi� � t : B;� u :=S vjthSi� � u : AjB;� (jR)
hSi� � t : A;� hSi�; tju : B � �hSi�; u : A . B � � (.L) [X not free in the onlusion℄hSi�; X : A � v : B;� v :=S X juhSi� � u : A . B;� (.R)[X not free in the onlusion℄hS; u := (�n)X i�; X : A � �hSi�; u : nrA � � (rL) hSi� � u : A;� t :=S (�n)uhSi� � t : nrA;� (rR)hSi�; t : A � � t :=S (�n)uhSi�; u : A�n � � (�L) hSi� � u : A;� u :=S (�n)thSi� � t : A�n;� (�R)Fig. 8. Spatial Rules.[X not free in the onlusion℄hS; u! X i�; X : A � �hSi�; u : �A � � (�L) hSi� � v : A;� u!S vhSi� � u : �A;� (�R)Fig. 9. Temporal Rules.hS; x#N; u := (�x)X i�� �hSi� � � (I)u :=S (�n)v

n#S Ix:AhSi�; u : Afx ng � �hSi�; u : Ix:A � � (IL) u :=S (�n)v
n#S Ix:AhSi�� u : Afx ng;�hSi� � u : Ix:A;� (IR)Fig. 10. Freshness Rules
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onstraint losure (De�nition 3.8) into the proof system, in partiular ax-iomatizing the priniple of substitution of equals for equals of name termsin formulas. Note that, in these rules, indexes are identi�ed up to :=S, whileformulas are identi�ed up to �S. As we shall disuss in Setion 5.2, expliittranspositions and the transpositions rule also play a ruial role in obtainingut-elimination for the freshness quanti�er.hSi�; u : Afx ng � �hSi�; u : 8x:A � � (8L) [y not free in the onlusion℄hSi� � u : Afx yg;�hSi� � u : 8x:A;� (8R)
hSi�; u : AfX Bg � �hSi�; u : 8X:A � � (82L) [Y not free in the onlusion℄hSi� � u : AfX Y g;�hSi� � u : 8X:A;� (82R)Fig. 11. Quanti�er Rules.hS; u := 0i� � � ujv :=S 0hSi� � � (Sj0) hS; u := 0i� � � (�n)u :=S 0hSi� � � (S�0)[X and Y not free in the onlusion℄hS; u := X jY ; (�n)X := t; (�n)Y := vi� � � (�n)u :=S tjvhSi� � � (S�j)[X ,X 0,Y and Y 0 not free in the onlusion℄hS; u := X jX 0; w := Y jY 0; t := X jY ; v := X 0jY 0i� � � ujw :=S tjvhSi� � � (Sjj)[X not free in the onlusion℄hS; u := (n$m)vi� � �hS; u := (�m)X ; v := (�n)X i� � � (�n)u :=S (�m)vhSi� � � (S��)0!S uhSi� � � (S0!) [X not free in the onlusion℄hS; u! X ; v := (�n)X i� � � (�n)u!S vhSi� � � (S� !)Fig. 12. World Rules.In the rules for propositional onnetives, indexes keep trak of the proesses21



for whih the formulas are asserted to hold, but do not interfere in any waywith the onstraint part of sequents. This is not the ase in rules for the spatialonnetives (Figure 8), that and make essential use of the onstraint theoriesin sequents. Note that the left rules, when read bottom-up, introdue spatialonstraints into the onstraint theories, and the respetive right rules, whenread top-down, hek orresponding onstraints. While spatial rules rely onspatial onstraints, temporal rules (Figure 9) rely on redution onstraints.The rules for �rst and seond order quanti�ers have the expeted form (Fig-ure 11). We then introdue the rules for freshness (Figure 10). Rule (I) as-serts, when read bottom-up, that there is always a name (denoted by) x thatis fresh with respet to the free names of (the proess denoted by) the indexu, and that is also fresh with respet to a set of names (denoted by the nameand propositional variables in) N . Hene, rule (I) orresponds to the (Fresh)axiom of Pitts' Nominal Logi [18℄.The rules (IL/R) for the fresh quanti�er do not show the symmetry onemight expet of a left / right rule pair. This fat relates to the existential /universal ambivalene of freshness quanti�ation (the Gabbay-Pitts property):note that (IL) follows the pattern of (8L), while (IR) follows the pattern of(9R). Then, (I) embodies the introdution of fresh witnesses usually presentin both (8R) and (9L). Both (IL) and (IR) inlude a premise of the form
n#S Ix:A, asserting that the name term n must denote a name distint fromall free names in the support of the property denoted by formula A. Moreover,in the rules for Ix:A, in addition to the freshness ondition n#S Ix:A, theassumption u :=S (�n)v ensures that n denotes a name that does not ourfree in the proess denoted by u, f. the semantis of Ix:A.Finally, world rules (Figure 12) axiomatize ertain deep (extra-logial) prop-erties of the worlds. Moreover, the properties aptured by the proposed setof world rules (inversion priniples for strutural ongruene and for proessredution) are expeted to hold in any natural variation of the �-alulus.It is important to note that none of the studied proof-theoreti properties ofour logi (e.g., ut-elimination) depend on the hosen set of world rules. Thismeans that the proof system is ompletely open to the addition of furtherworld rules, provided their soundness is granted, that they do not hange log-ial ontexts of sequents (� and �), and that they just hek or eliminateonstraints from the onstraint part of sequents.We assert ` hSi� � � to state that the sequent hSi� � � has a derivation.We now state soundness of our system with respet to the intended model.Theorem 3.22 (Soundness) All sequents derivable in S are valid in A�.Proof. See appendix.
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:A M= A) F (Negation)T M= :F (True)A _B M= :A) B (Disjuntion)AkB M= :(:Aj:B) (Deomposition)n
M= :nrT (Free name)2A M= :�:A (All next)� A M= A . F (Inonsisteny)!A M= � :A (Validity)A Z) B M= !(A) B) (Entailment)9x:A M= :8x::A (First-order existential quanti�ation)9X:A M= :8X::A (Seond-order existential quanti�ation)Hx:A M= Ix:xrA (Hidden name quanti�ation)Fig. 13. Derived Connetives.3.6 Derived Connetives and Inferene RulesBefore losing the setion, we introdue some useful derived onnetives (seeFigure 13). These inlude the usual operations of the lassial prediate al-ulus, namely :A (Negation), 9x:A (Existential quanti�ation), A _ B (Dis-juntion) and T (True), with the expeted meaning. Deomposition AkB isthe DeMorgan dual of omposition AjB. For instane, a proess satis�es 0k0if it is single-threaded (or void). We also have the standard temporal modality2, the dual of �. The free name prediate n holds of any proess with somefree ourrene of the name (denoted by the name term) n. Inonsisteny � Aexpresses internally to the logi that A is false of every proess and validity !Athat A holds of every proess [10℄. Thus, entailment A Z) B internalizes theonsequene relation indued by the logi. The hidden name quanti�er is de-�ned as in [2℄. For these onnetives the inferene rules presented in Figures 14and 15 an easily be shown to be admissible.4 Indutive and Coindutive De�nitionsIn this setion, we present our treatment of reursive formulas. First, as shownin Setion 3.6 we an ombine the spatial operator . with lassial negation toobtain an operator !AM=(A) F) . F that has the meaning that A is valid (issatis�ed by any proess). !A is an example of a lassial formula [10℄: the truthvalue of lassial formulas does not depend on the partiular world (proess)23



hSi� � �hSi�; u : T � � (TL) hSi� � u : T;� (TR)hSi�; u : A � �hSi�; u : B � �hSi�; u : A _B � � (_L) hSi� � u : A; u : B;�hSi� � u : A _B;� (_R)hSi� � u : A;�hSi�; u : :A � � (:L) hSi�; u : A � �hSi� � u : :A;� (:R)hSi�; v : A � �hSi�; t : B � � u :=S vjthSi�; u : AkB � � (kL) [X and Y not free in the onlusion℄hS; u := X jY i� � X : A; Y : B;�hSi� � u : AkB;� (kR)
u :=S (�n)vhSi�; u : n � � ( L) [X not free in the onlusion℄hS; u = (�n)X i� � �hSi� � u : n;� ( R)

hSi�; v : A � � u!S vhSi�; u : 2A � � (2L) [X not free in the onlusion℄hS; u! X i� � X : A;�hSi� � u : 2A;� (2R)Fig. 14. Inferene Rules for derived onnetives.at whih they are evaluated. Then, the formulaA Z) B M= !(A) B)means that the denotation of formula A is ontained in the denotation offormula B. Now, given a formula A with a free propositional variable X,we say that A is monotoni in X if the mapping that assigns JAKv[X 	℄ toevery property 	 is monotoni. Writing A as AfXg and AfX Bg as AfBg,through seond-order quanti�ation we an express inside the logi that A ismonotoni in X as follows:AfX+g M= 0 :!8X:8Y:(X Z) Y )) (AfXg Z) AfY g)We may hek that AfX+g is valid if and only if A is monotoni in X (notethat AfX+g is an indexed formula, where the index is 0).We then de�ne leastand greatest �xpoint operators in a style similar to F -algebrai enodings.24



hSi�; v : A � �hSi�; u :!A � � (!L) [X not free in the onlusion℄hSi� � X : A;�hSi� � u :!A;� (!R)
hSi� � v : A;� hSi�; v : B � �hSi�; u : A Z) B � � (Z)L) [X not free in the onlusion℄hSi�; X : A � X : B;�hSi� � u : A Z) B;� (Z)R)[x not free in the onlusion℄hSi�; u : A � �hSi�; u : 9x:A � � (9L) hSi� � u : Afx ng;�hSi� � u : 9x:A;� (9R)[X not free in the onlusion℄hSi�; u : A � �hSi�; u : 9X:A � � (92L) hSi� � u : AfX Bg;�hSi� � u : 9X:A;� (92R)[X not free in the onlusion℄

n#S Hx:AhS; u := (�n)X i�; X : Afx ng � �hSi�; u : Hx:A � � (HL) n#S Hx:A u :=S (�n)vhSi� � v : Afx ng;�hSi� � u : Hx:A;� (HR)Fig. 15. Inferene Rules for derived onnetives.�Y:AfY g M= 8Y:(AfY g Z) Y )) Y �Y:AfY g M= :�X::AfXgThese de�nitions turn out to enjoy the expeted properties of reursive formu-las, in the form of the derivable left and right rules in Figure 16. For example,the derivable rule (�R) orresponds to a oindution priniple. The foldingand unfolding priniples for �X:A and �X:A an also be derived, by makingan essential use of monotoniity assumptions. We show in detail the ase forfolding the least �xpoint operator, using the abbreviation F M=�X:AfXg tomake the proof more readable.hSi�; AfX+g � u : Af�X:AfXgg Z) �X:AfXg;� (Fold)5: hSi�; AfX+g; X : AfFg; X : AfXg Z) X; X : AfFg Z) AfXg � X : X;� (by Id)4: hSi�; AfX+g; X : AfFg; X : AfXg Z) X; X : F Z) X � X : X;� (by 5, (MonL))3: hSi�; AfX+g; X : AfFg; X : AfXg Z) X � X : X;� (by 4, (�FixL))2: hSi�; AfX+g; X : AfFg � X : F;� (by 3, (82R), (!R), ()R)1: hSi�; AfX+g � u : AfFg Z) F;� (by 2, (!R), ()R))25



hSi�; AfX+g; u : AfBg Z) AfCg � �hSi�; AfX+g; u : B Z) C � � (MonL)hSi�; AfX+g � u : B Z) C;�hSi�; AfX+g � u : AfBg Z) AfCg;� (MonR)[X is not free in the onlusion℄hSi�; u : X;u : X Z) AfXg � �hSi�; u : �X:A � � (�L)[X is not free in the onlusion℄hSi�; X : B � X : AfX Bg;� hSi� � u : B;�hSi� � u : �X:A;� (�R)[X is not free in the onlusion℄hSi�; u : AfXg Z) X � u : X;�hSi� � u : �X:A;� (�R)[X is not free in the onlusion℄hSi�; X : AfBg � X : B;� hSi�; u : B � �hSi�; u : �X:A � � (�L)hSi�; u : �X:AfXg Z) B � �hSi�; u : AfBg Z) B � � (�FixL) hSi� � u : AfBg Z) B;�hSi� � u : �X:AfXg Z) B;� (�FixR)Fig. 16. Derived rules for the �xpoint operators.In setion 6.6 we give further examples illustrating the use of reursion.5 Basi Proof TheoryIn this setion we develop some proof-theory for our logi, stating severaladmissible proof priniples and a ut elimination result for the �rst-orderfragment.5.1 Admissible RulesMost of the presented proof priniples are size-preserving, and instrumental tothe proof of ut elimination. We introdue a measure for the size of a deriva-tion, in whih ertain ourrenes of the (TL/TR) rules are not weighted. Wewill show below that any derivation an be transformed into a derivation for26



the same sequent where all ourrenes of the (TL/TR) rules are simple.De�nition 5.1 (Simple ourrene) In a derivation, an ourrene of a(TL/TR) inferene rule is simple if it applies either to an instane of (Id), orto another simple ourrene of a (TL/TR) inferene rule.De�nition 5.2 (Size of a derivation) The size of a derivation is the num-ber of rule ourrenes it ontains, other than simple ourrenes of (TL/TR)inferene rules.We then assert `n hSi�� � to state that the given sequent has a derivationof size not exeeding n. We have the following useful admissible rulesLemma 5.3 (Basi Admissible Rules) The following size-preserving proofpriniples are admissible:[ ';'0 2 V [ X [ Z, '0 not free in premise ℄`n hSi� � �`n hSf' '0gi�f' '0g � �f' '0g (Ren) [ � �� �0 and � �� �0 ℄`n hSi� � �`n hSi�0 � �0 (�)`n hSi� � �`n hSfx mgi�fx mg � �fx mg (InN ) `n hS; i� � � S ` `n hSi� � � (CS)`n hSi� � �`n hSfX ugi�fX ug � �fX ug (InI) `n hSi� � �`n hS; S0i�;�0 � �;�0 (W)Proof. See appendix.Lemma 5.4 (Replaement and Instantiation) The inferene rules pre-sented below are admissible[ X not free in S ℄hSi X : A � X : B hSi X : B � X : AhSi Y : C[A℄ � Y : C[B℄ (Rep) [ X not free in the onlusion ℄hSi� � �hSi�fX Ag � �fX Ag (In2)Proof. (Rep) By indution on the struture of the ontext C[�℄. (In2) Byindution on the derivation.Our primitive (Id) axiom is restrited to atomi formulas, however we havethe following standard property for unrestrited formulas.Lemma 5.5 Every sequent of the form hSi�; u : A � u : A;�, where A innot atomi, has a ut- and ontration-free derivation.Proof. See appendix. 27



We now introdue the following useful variants of the (TL) and (TR) rules.(n$m)A +S A0hSi�; u0 : A0 � � (m$n)u :=S u0hSi�; u : A � � (SL) (n$m)A +S A0hSi� � u0 : A0;� (m$n)u :=S u0hSi� � u : A;� (SR)
De�nition 5.6 S1 is the proof system obtained from the base proof system Sby replaing rules (TL) and (TR) with the rules (SL) and (SR).It is easy to see that if a sequent is derivable in S1 then it is also derivable inthe base system sine A �S B whenever A +S B. In fat, every S1 derivationan be seen as a derivation in the base system just by interpreting (SR) and(SL) as (TR) and (TL) respetively. Conversely, if a sequent is derivable inthe base system, it is also derivable in S1 sine any instane of (TL) or (TR)an be emulated using Cut, (SL) and (SR). Like with S derivations we allsimple to any S1 derivation in whih all instanes of (SL) and (SR) inferenerules are simple (f., De�nition 5.1). Hene, aording to De�nition 5.2, in asimple S1 derivation no ourrene of the (SL) and (SR) rule is weighted.Remark 5.7 The main di�erene between the system S and the system S1,is that all formulas ourring in a ut-free S1 proof of a normalized sequentare normalized (De�nition 3.18). Moreover, as the following Lemma shows,every S or S1 proof of a normalized sequent an be transformed into a S1proof of the same sequent in whih all formulas are normalized.Lemma 5.8 (Simpli�ation) Assume (n$m)u :=S u0 and (n$m)A +SA0, � +S �0 and � +S �0. Then the following size-preserving proof priniplesare admissible:(1) If `n hSi�; u : A � � in S then `n hSi�0; u0 : A0 � �0 in S1.(2) If `n hSi�� u : A;� in S then `n hSi�0 � u0 : A0;�0 in S1.The resulting derivations in S1 are simple and normalized. Moreover, if theoriginal derivations in S are ut-free the resulting ones in S1 are also ut-free.Proof. See appendix.A useful speial ase of Lemma 5.8 is the following fat.Lemma 5.9 Assume � +S �0 and � +S �0. If `n hSi� � � in S then`n hSi�0 � �0 in S1.Proof. By Lemma 5.8(2): let u : A = 0 : F and note that if `n hSi�0 � 0 :F;�0 then `n hSi�0 � �0. 28



hSi� � v : A; u : AjB;�hSi� � t : B; u : AjB;� u :=S vjthSi� � u : AjB;� (jRK) hSi�; u : A . B � t : A;�hSi�; u : A . B; tju : B � �hSi�; u : A . B � � (.LK)u :=S (�n)thSi� � t : A; u : nrA;�hSi� � u : nrA;� (rRK)hSi� � t : A; u : �A;� u!S thSi� � u : �A;� (�RK) hSi�; u : 8x:A; u : Afx mg � �hSi�; u : 8x:A � � (8LK)u :=S (�n)v n#S Ix:AhSi� � u : Ix:A; u : Afx ng;�hSi� � u : Ix:A;� (IR) u :=S (�n)v n#S Ix:AhSi�; u : Ix:A; u : Afx ng � �hSi�; u : Ix:A � � (IL)Fig. 17. Rules of the ontration-free system CF.5.2 Cut EliminationOur aim is now to prove the ut-elimination property for the �rst-order frag-ment of our logi. First, we introdue an alternative proof system CF. Thesystem CF has no primitive ontration rules, but admits an admissible size-preserving ontration priniple that plays an important role in the base aseof the Cut Lemma 5.17 below. Then, we show that there are transformationsbetween derivations in CF, S1, and S, suh that the ut-elimination propertyfor CF implies the ut-elimination property for S. From now on, we restritto the �rst-order fragment of our logi.De�nition 5.10 CF is the proof system obtained from the system S1 by re-moving the ontration rules (CL) and (CR), and replaing the rules (8L),(jR), (.L), (IL), (IR), (rR), and (�R) by the rules shown in Figure 17.The CF rules are idential to the orresponding ones in system S, exept inthat they embed a ontration step (f. the system G3 in [23℄), that is, theprinipal formula is opied in the premise. The replaed rules are preisely thenon-invertible ones. Note that in sequent alulus presentations of lassiallogi (e.g., Gentzen's LK) (8L) is not invertible, and in lassial linear logi(
R) is not invertible (f., (jR)) and (�ÆL) is not invertible (f. (.)).Note that any derivation in CF an be immediately transformed into a deriva-tion in the basi system, sine eah CF rule that does not belong to the systemS1 an be easily simulated by the orresponding rule followed by ontration.29



Lemma 5.11 If a sequent has a derivation in the system CF, it has a deriva-tion in the system S1. Moreover, if the original derivation is ut-free, so isthe resulting one.Moreover, sine the proof transformations given in Lemmas 5.3 and 5.8 areompletely struture-preserving, we an also verify thatLemma 5.12 (Admissible Rules for the CF system) The proof prini-ples in Lemma 5.3 and Lemma 5.8 hold exatly as stated for the CF system.Lemma 5.13 (Inversion) The following size-preserving proof priniples areadmissible in the system CF, provided the sequents shown are normalized.(1) If `n hSi�; u : A ^B � � then `n hSi�; u : A; u : B � �.(2) If `n hSi�� u : A ^ B;� then`n hSi� � u : A;� and `n hSi� � u : B;�.(3) If `n hSi�� u : A) B;� then hSi�; u : A � u : B;�.(4) If `n hSi�; u : A) B � � then`n hSi�; u : B � � and `n hSi� � u : A;�.(5) If `n hSi�� u : 8x:A;� then`n hSi� � u : Afx yg;�, for any fresh y.(6) If `n hSi�� u : A . B;� then`n hSi�; X : A � X ju : B;�, for any fresh X .(7) If `n hSi�; u : AjB � � then`n hS; u := X jY i�; X : A; Y : B � �, for any fresh X ; Y .(8) If `n hSi�; u : nrA � � then`n hS; u := (�n)X i�; X : A;� �, for any fresh X .(9) If `n hSi�; u : 0 � � then `n hS; u := 0i�� �.The resulting derivations are normalized. Moreover, if the original derivationsare ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. See appendix.Lemma 5.14 (Contration Elimination) The size-preserving proof prin-iples given below are admissible in the system CF, provided the sequentsshown are normalized:`n hSi� � u : A; u : A;�`n hSi�; u : A � � (CR) `n hSi�; u : A; u : A � �`n hSi�; u : A � � (CL)The resulting derivations are normalized. Moreover, if the original derivationsare ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. See appendix.We an now state: 30



Proposition 5.15 If a normalized sequent is derivable in S1 then it is deriv-able in CF. The resulting derivation is normalized. Moreover, if the originalderivation is simple, so is the resulting one.Proof. By indution on the struture of the original derivation, we onstrut aCF derivation by replaing every ourrene of (8L), (jR), (.L), (IL), (IR),(rR), and (�R) by the orrespondingCF rule, after adding the extra requiredformula in the premise using (W), and removing every ourrene of (CL) and(CR) using Lemma 5.14.We are now in a position to show that the �rst-order fragment of the spatiallogi enjoys the ut elimination property. This result is reasonable evidenethat our addition of strutural and freshness onstraints to sequents and in-ferene rules is rather anonial. For instane, uts on spatial formulas areeliminated quite uniformly, by mathing fresh proess variables (on one side)against the given witnesses (on the other), and then eliminating the remain-ing redundant strutural onstraints. The ut elimination ase for freshnessquanti�ations deserves a more detailed disussion. Consider the following uthSi� � u : Afx ng;�hSi� � u : Ix:A;� hSi�; u : Afx mg � u : �hSi�; u : Ix:A � �hSi� � �To eliminate this we need to ut u : Afx ng against u : Afx mg, while pre-serving the sequent ontexts �;� untouhed. In general m and n are di�erentname terms denoting distint names (we ould even have m#S n provably).In fat, soundness of this ut follows from the fat that a fresh name is (inthe sense of equivariane in Nominal Logi) indistinguishable from any otherfresh name. In proof-theoreti terms, the equivariane property has as on-sequene that, in the apartness onditions made expliit by the premises ofsuh a ut, we an atually transform (using Lemma 5.8) the derivation ofhSi� � u : Afx mg;� into a derivation of hSi� � u : Afx ng;�. Forthis transformation to go through the use of formal transpositions seems tobe essential both in the �-algebra and in the syntax of formulas and terms.De�nition 5.16 (Single-ut derivation) A single-ut derivation is a deriva-tion with a single instane of the (Cut) rule, ourring at its root.Lemma 5.17 (Cut Lemma) If a normalized sequent has a single-ut simpleand normalized CF derivation then it has a simple and normalizedCF ut-freederivation.Proof. The root of the derivation of the given sequent has the form�1(n)hSi� � u : A;� �2(m)hSi�; u : A � � (Cut)hSi� � �31



where �1(n) and �2(m) are ut-free simple derivations for the sequents hSi� �u : A;� and hSi�; u : A � �, of sizes n and m respetively. We use thenotation �(n) to assert that � is a derivation of size n of the sequent inthe onlusion of the rule. The proof proeeds by indution on the measure(jAj; n+m), where jAj is the strutural omplexity of the ut-formula A, n+mis the sum of the sizes n and m of the derivations that ours as premises ofthe ut, and the pairs (jAj; m+ n) are ordered lexiographially. We split thevarious possible forms of suh premises as follows: (1) one of the premises isan instane of (Id) or (SL), (2) one of the premises is an instane of a worldrule, (3) one of the premises is an instane of (I), (4) one of the premises isan instane of a logial rule that does not introdue the ut-formula, or (5)both premises are instanes of logial rules, both introduing the ut formula.(1) (Case (Cut) - (Id/SL)) Suppose (Id/SL) ours in the right premise ofthe ut. Sine the derivation is simple by assumption, it must have the form(1:A) below�1(n)hSi� � u : A;� hSi�� � �� (Id)���hSi�; u : A � �hSi� � � (1:A) �10(n)hSi� � v : C; v : C;�00 (1:B)where the dots stand for a sequene of k � 0 appliations of the (SL) or(SR) rules. Hene, �� has the form �0; t : B, and �� has the form t : B;�0.We must onsider two ases: either the ourrene t : B in �� results fromu : A below in hSi�; u : A � �, or it does not. In the �rst ase, there is asequene of transpositions � suh that �u :=S t and �A +S B, and a sequeneof transpositions � suh that �v :=S t and �C +S B, for some v : C in �(so � has the form v : C;�00). Therefore we have that ��1�A +S C and��1�u :=S v. Hene, by Lemma 5.8(1), there is the derivation (1:B) above,and we onlude by (CR) Lemma 5.14. In the seond ase, we an then builda ut-free simple proof of hSi� � � of size equal to one by removing thepremise u : A and its anestors from every sequent above hSi�; u : A ` �.The ase in whih the instane of (Id/SL) ours as the left premise of the utis handled symmetrially, also by Lemma 5.8.(2) (Case Cut - (S�)) We have�1(n)
S; S0�� � u : A;� u1 :=S v1 (S�)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �32



We an now build the derivation�1(n)
S; S0��; u : A � � �20(m)
S; S0��; u : A � �
S; S0�� � � u1 :=S v1 (S�)hSi� � �where �02(m) is obtained from �2(m) by (W). By indution hypothesis, thereis a ut-free derivation of hS; S 0i�� �, so we onlude by (S�).(3) (Case Cut - (I) We handle the ase in whih the onlusion of (I) isthe left premise of the ut, being the right ase handled symmetrially. Hene,we have �1(n)hS; t := (�x)X ; x#Ni� � u : A;� (I)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �We an now build the derivation�1(n)hS; t := (�x)X ; x#Ni� � u : A;� �20(m)hS; t := (�x)X ; x#Ni�; u : A � �hS; t := (�x)X ; x#Ni� � � (I)hSi� � �where �02(m) is obtained from �2(m) by (W). By indution hypothesis, thereis a ut-free derivation of hS; t := (�x)X ; x#Ni�� �, so we onlude by (I).(4) (Case 4.LR) We onsider here the ase in whih the left premise of theut rule is the onlusion of a right logial rule that does not introdue the utformula. We onsider the general ase of a two-premise rule, but the argumentan be repliated for single premise rule like (8R), or ()R), whih adds anhypothesis (e.g., �1) to the left ontext. Hene we have,�1(n)hSi�;�1 � u : A;�1 �2(m)hSi�;�2 � u : A;�2 CS (�R)hSi� � u : A;� �3(k)hSi�; u : A � �hSi� � �where in general the instane of (�R) may also have some assertions CS aspremises. Now, by (W) we an build derivations�03(k)hSi�; u : A;�1 � �;�1 �003(k)hSi�; u : A;�2 � �;�233



hene we an onstrut the derivations�1(n)hSi�;�1 � u : A;�;�1 �03(k)hSi�; u : A;�1 � �;�1hSi�;�1 � �;�1and �2(m)hSi�;�2 � u : A;�;�2 �003 (k)hSi�; u : A;�2 � �;�2hSi�;�2 � �;�2By indution hypothesis, there are ut-free derivations for the hSi�;�1 ��;�1 and hSi�;�2 � �;�2. Hene, by (�R) we an build a ut-free deriva-tion of hSi�� �, sine all possibly required assertions CS still apply.(Case 4.LL) The left premise of the ut is the onlusion of a left logial rulethat does not introdue the ut formula. Note that in our proof system allleft rules have at most one premise, although some require testing ertainassertions C (namely (IL)). Hene we have in general�1(n)
S; S0��0 � u : A;� CS (�L)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �Using (W) on �1(n) and �2(m) we an build the derivation�01(n)
S; S0��;�0 � u : A;� �02(m)
S; S0��; u : A;�0 � �
S; S0��;�0 � �By indution hypothesis, we obtain a ut-free derivation of hS; S 0i�;�0 � �.Sine CS;S0 holds, by (�L) we obtain a ut-free derivation of hSi� � �.(Case 4.RR) The right premise of the ut is the onlusion of a right logialrule that does not introdue the ut formula. Like (Case 4.LL) above.(Case 4.RL) The right premise of the ut is the onlusion of a left logial rulethat does not introdue the ut formula. Like (Case 4.LR) above.(5)We now onsider all ases where the premises of the ut are onlusions of(left and right) logial rules, both introduing the ut formula. Then the rulethat ours in the left (resp. left) premise is a right-rule (resp. left-rule). Weonsider the various possible rule pairs, there is one suh pair for eah logialonnetive. We show in detail the most interesting ases.34



(Case of j) We have�1(n)hSi� � u0 : A; u : AjB;� �2(m)hSi� � u00 : B; u : AjB;�hSi� � u : AjB;� �3(k)
S0��; X : A; Y : B � �hSi�; u : AjB � �hSi� � �where u :=S u0ju00, and S 0 = S; u := X jY . By (InI) with fX u0g and fY  u00gon �3 we get �03(k) �03(k)hS; u := u0ju00i�; u0 : A; u00 : B � �(note that by the side ondition on (jL) X and Y do not our in S;�;�).Sine u :=S u0ju00, by (CS) we get �003(k)�003(k)hSi�; u0 : A; u00 : B � �We now build hSi� � u0 : A; u : AjB;� hSi�; u : AjB � �hSi� � u0 : A;�and hSi� � u00 : B; u : AjB;� hSi�; u : AjB � �hSi� � u00 : B;�By indution hypothesis, these uts an be eliminated. By (W) from the deriva-tion of hSi� � u0 : A;� above, we obtain a derivation of hSi�; u00 : B � u0 :A;�. Now we onstrut���hSi� � u00 : B;� ���hSi�; u00 : B � u0 : A;� ���hSi�; u0 : A; u00 : B � �hSi�; u00 : B � �hSi� � �By indution hypothesis, these two uts an be suessively eliminated.(Case of .) Let�1(n)hSi�; X : A � v0 : B;�hSi� � u : A . B;� �2(m)hSi�; u : A . B � t : A;� �3(k)hSi�; u : A . B; tju : B � �hSi�; u : A . B � �hSi� � � 35



where v0 :=S X ju. By (InI) with fX tg on �1(n) and Lemma 5.8(1) we get�01(n)hSi�; t : A � tju : B;�sine by Lemma 3.10(1) v0fX tg :=S tju (note that by the side ondition on(.R) X does not our in S;�;�). We an now build�0(n+ 1)hSi� � u : A . B; t : A;� �2(m)hSi�; u : A . B � t : A;�hSi� � t : A;�where �0(n + 1) is obtained from the left premise of the original ut by (W).In a similar way we onstrut�00(n+ 1)hSi�; tju : B � u : A . B;� �3(k)hSi�; u : A . B; tju : B � �hSi�; tju : B � �By indution hypothesis, these two uts an be eliminated. By (W) on the�rst subderivation above we get ���hSi� � t : A; tju : B;�We now build the following derivation���hSi�; tju : B � � ���hSi� � t : A; tju : B;� �01(n)hSi�; t : A � tju : B;�hSi� � tju : B;�hSi� � �To onlude, we use the indution hypothesis to eliminate the ut on B, andthen the ut on A, like in the ases for ^ and ) above.(Case of 8) We have�1(n)hSi� � u : Afx yg;�hSi� � u : 8x:A;� �2(m)hSi�; u : Afx pg; u : 8x:A � �hSi�; u : 8x:A � �hSi� � �where y does not our free in u; S;�;�. By (InN ) with fx pg on �1(n)�01(n)hSi� � u : Afx pg;�36



Using (Cut) we an build�2(n+ 2)hSi�; u : Afx pg � u : 8x:A;� �2(m)hSi�; u : Afx pg; u : 8x:A � �hSi�; u : Afx pg � �where the left premise omes from the left premise of the original ut by(W). By indution hypothesis, this ut an be eliminated. We now build thefollowing single-ut derivationhSi� � u : Afx pg;� hSi�; u : Afx pg � �hSi� � �and onlude by the indution hypothesis.(Case of I) We have�1(n)hSi� � u : Afz pg; u : Iz:A;�hSi� � u : Iz:A;� �2(m)hSi�; u : Afz qg; u : Iz:A � �hSi�; u : Iz:A � �hSi� � �where p#S Iz:A and q#S Iz:A, and u :=S (�p)u0 and u :=S (�q)u00. We annow build the derivation�1(n)hSi� � u : Afz pg; u : Iz:A;� �0(m+ 1)hSi�; u : Iz:A � u : Afz pg;�hSi� � u : Afz pg;�where the right premise is obtained from the right premise of the initial utby (W). Symmetrially, we an build the derivation�00(n+ 1)hSi�; u : Afz qg � u : Iz:A;� �2(m)hSi�; u : Afz qg; u : Iz:A � �hSi�; u : Afz qg � �where the left premise is obtained from the left premise of the initial ut by(W). These two uts an be eliminated by the indution hypothesis. Sine(p$ q)Afz pg +S Afz qg by Lemma 3.20 and (p$q)u :=S u by (SwapErase), by Lemma 5.8 there is a derivation of� � u : Afz qg;�Then, we build the single-ut derivationhSi� � u : Afz qg;� hSi�; u : Afz qg � �hSi� � �37



and onlude by the indution hypothesis.Theorem 5.18 (Cut Elimination) If a sequent has a �rst-order derivationin S then it has a derivation in S without any instane of the (Cut) rule.Proof. Assume that a sequent hSi� � � has a �rst-order derivation � inthe base system S. Without loss of generality, we assume that the sequentis normalized. If the sequent has a derivation in S, by Lemma 5.9 it has asimple and normalized S1 derivation �0. By Proposition 5.15, we onludethat hSi� � � has a simple and normalized derivation �00 in CF. Now, byindution on the number of instanes of (Cut) in �00, we an build a ut-freesimple and normalized derivation of the same sequent by iterating Lemma 5.17for eah minimal single-ut subderivation of the derivation �00, thus ending upwith a ut-free CF derivation of the original sequent. By Lemma 5.11, weonlude that the sequent has a ut-free derivation in S1 and thus also in S.
6 ExamplesIn this Setion we go though a sequene of short examples to show how ourlogi is appliable to reasoning about distributed onurrent systems. We areneessarily brief here, and show only very elementary examples, but mostinteresting logial operators are overed.6.1 Some Simple Spatial PropertiesWe show a simple derivation of the fat that (AjB) ^ 0 entails A, meaningthat if a proess satis�es (AjB) ^ 0 then it satis�es A. The intuition is thatif a proess P satis�es both (AjB) and 0, then P is (struturally equivalentto) the 0 proess, whih is the same as 0j0; hene 0 satis�es A (and B). Weonlude that P satis�es A. This derivation illustrates: a property ombiningspatial and propositional operators; the use of onstraint manipulation; andthe use of one of the world rules, namely, (Sj0) orresponding to the "zerolaw" of �-alulus proesses: if P jQ � 0 then P � 0.5: hS; u := X jY ; u := 0; X := 0i�; X : A; Y : B � u : A;� (by (Id) sine u :=S X )4: hS; u := X jY ; u := 0i�; X : A; Y : B � u : A;� (by 5, (Sj0) sine X jY :=S 0)3: hS; u := X jY i�; X : A; Y : B; u : 0 � u : A;� (by 4, (0L))2: hSi�; u : (AjB); u : 0 � u : A;� (by 3, (jL))1: hSi�; u : (AjB) ^ 0 � u : A;� (by 2, (^L))38



Note that the proof is fairly simple, partiularly if onduted bottom up. Mostonstraints are generated from the goal by using all the appliable left rules,and the �nal onstraint X := 0 is generated by losing up the onstraint setunder dedution, via (Sj0). Finally, (Id) involves a simple equivalene hekin S. It is ommon for our derivations, when read bottom-up, to have thismehanial avor.As a further interesting example, we prove a sequent for whih does not existsa ontration free-proof in our system.11: hi X : A � X : 0; X : A; X : 0 (by (Id))10: hi � X : :A; X : 0; X : A; X : 0 (by 11 (:R))9: hi � X : :A; X : 0;0 : :A;0 : 0 (by (0R))8: hi � X : :A; X : 0; X : (A _ 0) (by 10 (_R))7: hi � X : :A; X : 0;0 : (:A _ 0) (by 9 (_R))6: hi � X : :A; X : 0; X : (A _ 0)j(:A _ 0) (by 7,8, (jR), sine u := uj0))5: hi � 0 : A;0 : 0; X : (A _ 0)j(:A _ 0) (by (0R))4: hi � 0 : A _ 0; X : (A _ 0)j(:A _ 0) (by 5, (_R))3: hi � X : :A _ 0; X : (A _ 0)j(:A _ 0) (by 6, (_R))2: hi � X : (A _ 0)j(:A _ 0); X : (A _ 0)j(:A _ 0) (by 3,4, (jR), sine u := 0ju)1: hi � X : (A _ 0)j(:A _ 0) (by 2, (CR))Indeed, any ut-free proof of hi � X : (A _ 0)j(:A _ 0) must end eitherby an appliation of ontration or by an appliation of (jR). So, in abseneof ontration, the only possible premises are either hi � X : (A _ 0) andhi � 0 : (:A _ 0), or hi � 0 : (A _ 0) and hi � X : (:A _ 0). In either ase, bysoundness we an verify that neither hi � X : (:A _ 0) nor hi � X : (A _ 0)an be derivable in general.
6.2 FreshnessWe show a derivation of the fat that :Ix:A entails Ix::A. This (and itsonverse) is a well-known property of Ix:A [14℄; the purpose here is to showthe use of the rules for freshness in a simple ase.39



6: hS; y#Ix:A; u := (�y)X i�; u : Afx yg � u : Afx yg;�(by (Id) hoose y; X fresh)5: hS; y#Ix:A; u := (�y)X i� � u : Afx yg; u : :Afx yg;� (by 6, (: R))4: hS; y#Ix:A; u := (�y)X i� � u : Ix:A; u : :Afx yg;� (by 5, (IR))3: hS; y#Ix:A; u := (�y)X i� � u : Ix:A; u : Ix::A;� (by 4, (IR))2: hS; y#Ix:A; u := (�y)X i�; u : :Ix:A � u : Ix::A;� (by 3, (: L))1: hSi�; u : :Ix:A � u : Ix::A;� (by 2, (I) y; X not in onlusion)We start with Afx yg for a fresh y, instead of simply with A, so that we anapply (I) in the last step even when x ours free in �;�. It is usually the asethat an appliation of rules (I L) or (I R) is followed by an appliation of rule(I), to lean up the onstraints. Note, however, that having (I) deoupledfrom (IL) and (IR) allow us to apply, in this ase, (IR) twie before applying(I).Along similar lines, we an derive interesting properties ombining Ix:A withspatial operators, for example the following one, whih is important for de-riving properties of the hiding quanti�er (it takes about eight steps in eahdiretion, but with a rather more involved set of onstraints):hSi�; u : (Ix:A)j(Ix:B) �� u : Ix:(AjB);�This derivation uses the world rule (S�j), whih embeds a rather deep lemmaabout �-alulus strutural ongruene; namely, that if (�n)P � QjR thenthere exist P 0; Q0 suh that P � P 0jP 00 and (�n)P 0 � Q and (�n)P 00 � R.6.3 EquivarianeIn general terms, we have that an A� proess P satis�es the formula nrA ifP � (�n)Q, where Q is a proess that satis�es A, and n is the name denotedby n. Then n denotes a name whih is hidden, and hene not free, in P .Therefore, the revelation operator has a useful meaning also in the speialase nrT: the proess P satis�es nrT if and only if the name denotedby n is fresh in P (In Setion 3.6 we introdued n as an abbreviation for:nrT). We an show than A ^mrT ^ nrT entails (n$m)A:3: hZ := (�n)X ; Z := (�m)Y i (n$m)Z : (n$m)A; X : T; Y : T � Z : (n$m)A2: hZ := (�n)X ; Z := (�m)Y i Z : A; X : T; Y : T � Z : (n$m)A (by 3, (TL))1: hi Z : A ^mrT ^ nrT � Z : (n$m)A (by 2, (^L and rL))40



(Note the use of (Swap Erase) in step 3, proved by (Id), to show (n$m)Z := Zw.r.t. the onstraint part of the sequent) This property an be interpreted assaying that, for any proess P , if it satis�es A, it also satis�es (n$ m)Afor any fresh names m and n. This fat is a onsequene of the equivarianeproperty of the semantis: intuitively, if the name denoted by (say) m oursin the formula A but not in the proess P , then we would expet the name mto be irrelevant to the fat that P satis�es A. This means that if we swap informula A the name m by any other fresh name n, we would expet that Pwould still satisfy it (sine a fresh name is as good as any other fresh name).For example, the following provable sequenthn#p;m#pi X : nr(phnijT) ^mrT ^ nrT � X : mr(phmijT)says that if a proess is about to send a fresh name on a publi hannel p, itan send any other fresh name as well.6.4 InputIn our logi we have a primitive formula to observe messages, nhmi, orre-sponding to the output operator of the asynhronous �-alulus. We do nothave a orresponding input formula, but it an be expressed from output alongthe lines of [20℄. The guarantee operator is ruial to this; reall that a proessP satis�es A . B if for any Q that satis�es A, we have that P jQ satis�es B(this an be read out from (.R)). We say that P satis�es B "in presene" ofany Q that satis�es A. We an take the following de�nition of input:x(y):A M= 8y:xhyi . �AThe intention is that a proess satis�es the input spei�ation x(y):A if itperforms an input over a given hannel x of any name y (with y bound in A),and then satis�es the property A. The above de�nition says literally, that aninput proess is one that, in presene of any output message y over the givenhannel x, at the next step (after input) it behaves aording to A.It is then easy to verify that beause of the adjuntion between j and .,input and output interat as expeted in �-alulus ommuniation, that is,xhzijx(y):A entails �Afy zg:4:2: hS; u = X jY i�; X : xhzi � X : xhzi; u : �Afy zg;� (by (Id))4:1: hS; u = X jY i�; X : xhzi; X jY : �Afy zg � u : �Afy zg;� (by (Id))3: hS; u = X jY i�; X : xhzi; Y : xhzi . �Afy zg � u : �Afy zg;� (by 4.1-2, (.L))2: hS; u = X jY i�; X : xhzi; Y : 8y:xhyi . �A � u : �Afy zg;� (by 3, (8L))1: hSi�; u : xhzij(8y:xhyi . �A) � u : �Afy zg;� (by 2, (jL))41



So we have that the following sequent is derivable:hSi�; u : xhzijx(y):A� u : �Afy zg;� (I/O)6.5 HidingIn Part I and Setion 3.6 we de�ned a hiding quanti�er: Hx:AM=Ix:xrAwhih is related to �-alulus name restrition in an appropriate way; namely,that if proess P satis�es formula Afx ng, then (�n)P satis�es Hx:A, wheren is a (fresh) name denoted by n. An interesting use of Hx:A is in speifying\none generators", that is proesses that output freshly generated names ona given hannel. In �-alulus, a none generator an be written simply as(�n)nhni, for a given hannel n. A none generator over n an then bespei�ed by the following formula:
Nc

M= Hx:nhxiWe an show that, when a none generator interats with an input, the resultis the aquisition of a private name:hSi�; u : Nc jn(y):A� u : �Hz:Afy zg;� (BI/O)Before input we have a none generator Nc separate from the input proess.After one step, we have that the A part has aquired a name z; but notieablythis z is "hidden" within Afy zg by the sope of the hiding quanti�er. Henethe A part of the system has aquired, from the none generator, a privatename not shared with other parts of the system (at least, not yet).6.6 Reursive PropertiesWe show a ouple of derivations involving reursive formulas and freshness.As a �rst example, onsider the following formulasWriter M=�X:(xhyijX) ReaderM=�Y:(x(y):Y ) LiveLokM=�Z:�ZThus, a proess that satis�es Writer is able to send an unbounded numberof messages xhyi. Likewise, a proess that satis�es Reader has ontinuouslyenabled the apability of onsuming the message xhyi. We an prove that theomposition of Writer and Reader has a non-terminating omputation path:this fat an be expressed by the sequenthi X : ReaderjWriter � X : LivelokWe abbreviate B M= xhyijWriterjx(y):Reader, so that the formula B is the onestep unfolding of the formula ReaderjWriter. Let also M be the sequent on-42



text expressing the monotoniity assumptions (see Setion 4) for the reursiveformulas Reader and Writer in the example (the proof of M is also rathermehanial): M M= (xhyijX)fX+g; (x(y):Y )fY +g. We an then use a standardoindutive argument to show the statement:4: hiM; X : ReaderjWriter; Y : B � Y : �ReaderjWriter (by I/O)3: hiM; X : ReaderjWriter; Y : B � Y : �B (by 4, (Unfold))2: hiM; X : ReaderjWriter � X : B (by (Unfold), (Id))1: hiM; X : ReaderjWriter � X : Livelok (by 2, 3 (�R))1: hi X : ReaderjWriter � X : Livelok (by (Cut), with hi �M)As a seond example of the use of reursion, extending the one in Setion 6.5,we speify a reursive none generator (a proess produing an unboundednumber of fresh names) by follows: UNc M= �X:Nc jX. As in our last example,we an then show
X : UNc jUNc � X : UNcThis is simple but signi�ant: it means that (without any knowledge of the�-alulus implementation) two reursive none generators running in parallelbehave like a single reursive none generator; in partiular, the two generatorsdo not risk generating independently the same name twie.7 ConlusionWe have presented a sequent alulus that has a diret interpretation in termsof distributed onurrent behaviors, inluding notions of resoure hiding. Webelieve we have obtained a unique ombination of, on one hand, good proof-theoretial strutures and properties, and, on the other hand, diret appli-ability to onurreny. These twin aims have driven us towards a \manyworlds" formulation of modal sequents that has been able to aommodate awide range of unusual but strongly motivated logial onstrutions.
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Given a name term m and a list of distint name variables ~x, we write S(m; ~x)for the set of all maximal subterms of the name term m that do not ontainourrenes of name variables x in the list ~x. In a similar way, given a formulaA and a list of distint (name or propositional variables) ~x, we write S(A; ~x)for the set of all logially free terms in formula A that do not ontain our-renes of some name or (propositional) variable x in the list ~x. More preisely:S(A; ~x)M=fn j n 2 lft(A) and fv(n) \ ~x = ;g N.B. S(A; ;) = lft(A).Lemma 8.1 Let p; q;m be name terms suh that p; q#S S(A; ~x), where ~x isa list of distint name variables, and ~n is a mathing list of name terms (for~x). Then (p$q)(mf~x ~ng) :=S mf~x (p$q)~ng.Proof. Indution on the struture of the name term m.Lemma 8.2 Let p; q be name terms and A a normalized formula suh that
p; q#S S(A; ~x), where ~x is a list of distint variables, and ~n is a mathing listof name and propositional terms. Then (p$q)(Af~x ~ng) +S Af~x ~(p$q)ng.Proof. Indution on the struture of the formula A. The result is in all ases adiret onsequene of the indution hypothesis; in the ase of formulas men-tioning name terms, the result follows from Lemma 8.1. We detail two ases.(Case of A = mrB) We must have (p$q)(Af~x ~ng) +S m

0rB0 where(p $ q)(Bf~x ~ng) +S B0 and m
0 :=S (p $ q)(mf~x ~ng). Note that wemust have p; q#S S(m; ~x). Therefore, by Lemma 8.1, we onlude m

0 :=S
mf~x (p$q)~ng. By indution hypothesis, we onlude (p$q)(Bf~x ~ng) +SBf~x (p$q)~ng. Hene (p$q)(Af~x ~ng) +S mf~x (p$q)~ngr(Bf~x (p$
q)~ng) = Af~x (p$q)~ng.(Case of A = Iz:B) We have (p $ q)Af~x ~ng +S Iz:B0 where (p $
q)Bf~x; z ~n; (p$ q)zg +S B0. We an the apply the indution hypothesis(note that S(Iz:B; ~x) = S(B; ~x[fzg), and onlude (p$q)Bf~x; z ~n; (p$
q)zg +S Bf~x; z (p$ q)~n; zg. Hene (p$ q)Af~x ~ng +S Iz:(Bf~x (p$
q)~ng) = Af~x (p$q)~ng.Theorem 3.22 [Soundness℄ All sequents derivable in S are valid in A�.Proof. We show that all inferene rules are sound. An inferene rule is sound ifthe sequent in the onlusion is valid provided all the sequents and assertionsourring as premises are valid (see De�nitions 3.12 and 3.16). Cases of (Id),(Cut), (FL), (FR), (^L), (^R), ()L) and ()R) are standard.� (Case of (TL)) Let J be an interpretation for the sequent hSi�; u : A � �suh that J satis�es S and all of �; u : A. Then J satis�es all of � andJ (u) 2 JAKJ . Therefore, fJnKJ$JmKJ gJ (u) 2 fJnKJ$JmKJ gJAKJ =J(n$m)AKJ .Sine (m$ n)A �S A0 and (m$ n)u :=S u0, by Lemma 3.21(1) andLemma 3.13(2) we have J(m$n)AKJ = JA0KJ and fJnKJ$JmKJ gJ (u) �J (u0). We onlude J (u0) 2 JA0KJ .� (Case of (TR)) Similar to (TL). 46



� (Case of (S�j)) Let J be an interpretation for the sequent hSi� � � inthe onlusion suh that J satis�es S and J satis�es all of �. In partiular,we have (�J (x))J (u) � J (t)jJ (v). By Proposition (Part I)2.13(2) [4℄,there are proesses P and Q suh that t � (�J (x))P , v � (�J (x))Q, andJ (u) � P jQ. Let J 0 M=J fX PgfY Qg.J 0 satis�es hS; u := X jY ; (�x)X := t; (�x)Y := vi. Sine X and Y do notour in � and �, we have that J 0 satis�es all of �, hene by validity of thepremises it also satis�es some of �. So J satis�es some of �.� (Case of other (S�) rules). Like with (S�j) above, soundness is a on-sequene of the inversion properties of Proposition (Part I)2.13 [4℄.� (Case of (0R)) Let J be an interpretation for the sequent hSi� � �in the onlusion, and assume that J satis�es S. Hene J (u) � 0, thusJ (u) 2 J0Kv.� (Case of (0L)) Let J be an interpretation for hSi�� �, and assume thatJ satis�es all of �; u : 0. Hene J (u) � 0, and J satis�es hS; u := 0i. Byvalidity of the premise, J satis�es some of �.� (Case of (jR)) Let J be an interpretation for the sequent hSi� � �in the onlusion, and assume that J satis�es S and J satis�es all of �.By assumption, J (u) � J (v)jJ (t). If J satis�es some of �, we have theonlusion. Otherwise, by validity of the premises, we must have J (v) 2JAKJ and J (t) 2 JBKJ . From that, we onlude J (u) 2 JAjBKJ .� (Case of (jL)) Let J be an interpretation for the sequent in the onlusion,and assume that J satis�es S and J satis�es all of �; u : AjB. Thus,there are P and Q suh that J (u) � P jQ, P 2 JAKJ and Q 2 JBKJ . LetJ 0 M=J fX PgfY Qg: then J 0 satis�es hS; u := X jY i and J 0 satis�es all of�; X : A; Y : B. To onlude, note that by assumption J 0 satis�es some of�, and that J 0 agrees with J on �.� (Case of (.R)) Let J be an interpretation for the sequent in the on-lusion, and assume that J satis�es S and J satis�es all of �. Pik anyproess P 2 JAKJ . Sine X does not our in the onlusion, the inter-pretation J P M=J fX Pg) also satis�es S and all of �; X : A. By assump-tion, J P (v) 2 JBKJ P = JBKJ . But J P (v) � P jJ P (u) = P jJ (u). HeneP jJ (u) 2 JBKJ , for all proesses P 2 JAKJ . We onlude J (u) 2 JA.BKJ .� (Case of (.L)) Let J be an interpretation for the sequent in the onlusion,and assume that J satis�es S and J satis�es all of �; u : A . B. Thus, forall proesses P suh that P 2 JAKJ we have that P jJ (u) 2 JBKJ . SineJ satis�es all of �, by validity of the left premise either J satis�es t : Aor J satis�es some of �. In the latter ase, we an onlude. Otherwise,J (t) 2 JAKJ . Then J (tju) 2 JBKJ , hene J satis�es all of �; tju : B. Byvalidity of the right premise, we also onlude that J satis�es some of �.� (Case of (�R)) and (Case of (�L)) By Lemma 3.13(2).� (Cases of (rL), (rR), (�L), and (�R)) Like (jR), (jL), (.L) and (.R).� (Case of (8R)) Let J be an interpretation for the sequent hSi� � u :8x:A;� in the onlusion suh that J satis�es S and J satis�es all of �.Pik any name n 2 � and de�ne J n M=J fx ng; J n is then an interpretation47



for the sequent hSi� � u : A;� in the premise. Note that for all namesn, J n satis�es S and J n satis�es all of �, sine x does not our free inthe onlusion of the rule. Hene, by validity of the premise, J n satis�essome of u : A;�, for all n. Now, suppose there is an interpretation J n thatsatis�es some of �. Then also J satis�es some of � sine x is not free in�, and we have the onlusion. Otherwise, we must have J n(u) 2 JAKJ nfor all names n. But then, J (u) 2 J8x:AKJ .� (Case of (8L)) Let J be an interpretation for the sequent hSi�; u : 8x:A �� in the onlusion suh that J satis�es S, J satis�es all of �; u : 8x:A.Hene, we have J (u) 2 JAKJ [x p℄ for all names p, in partiular for n =JmKJ . Hene, we onlude J (u) 2 JAfx mgKJ . By validity of the sequentin the premise, we onlude that J satis�es some of �.� (Cases of (82R) and (82L)) The proof is similar to (8L) and (8R) above.� (Case of (I)) Let J be an interpretation for the sequent hSi� � � suhthat J satis�es S and J satis�es all of �. Now, let P = J (u) and pik anyname n 62 fn(P ) suh that n 6= J (y) for all y 2 fv(N) and n 62 supp(J (X)),for all X 2 fpv(N).When then have J (u) � (�n)J (u). De�ne J 0 M=J fx ngfX Pg. HeneJ 0 is an interpretation for the sequent in the premise, where J 0 satis�eshS; u := (�x)X ; x#Ni and J 0 satis�es all of � (sine x and X are fresh). Byvalidity of suh sequent, we onlude that J 0 satis�es some of �. Sine J 0agrees with J on �, we onlude that J satis�es some of �.� (Case of (IR)) Let J be an interpretation for the sequent hSi� � u :Ix:A;� suh that J satis�es S and J satis�es all of �. By validity of thepremise, J satis�es some of u : Afx ng;�. If J satis�es some of � theproof is onluded. Otherwise, J (u) 2 JAfx ngKJ = JAKJ [x JnKJ ℄. Byassumption, the assertion u :=S (�n)v is valid, hene J (u) � (�J (n))J (v).So, JnKJ 62 fn(J (u)). Moreover, sine n#S Ix:A, by Lemma 3.21(2) wehave JnKJ 62 fnJ (Ix:A). Sine J (u) 2 JAKJ [x JnKJ ℄, J (u) 2 JIx:AKv.� (Case of (IL)) Let J be an interpretation for the sequent hSi�; u :Ix:A � � suh that J satis�es S and J satis�es all of �; u : Ix:A. In par-tiular, we have J (u) 2 JAKJ [x n℄ for some n 62 fn(J (u))[fnv(Ix:A). Thus,by Theorem 2.3(3), for all names p 2 � suh that p 62 fn(J (u))[ fnv(Ix:A)we have J (u) 2 JAKJ [x p℄. Like in the ase above for (IR), we an verifythat JnKJ 62 fn(J (u)) [ fnv(Ix:A), so that n denotes a possible freshnesswitness. Hene, we have J (u) 2 JAKJ [x JnKJ ℄ = JAfx ngKJ . Sine thepremise of the rule is valid by assumption, J satis�es some of �.Lemma 5.3 (Basi) The size-preserving proof priniples (CS), (Ren), (W),(InI) and (InN ) are admissible.Proof. (CS) By indution on the struture of derivations, using Lemma 3.10(2).(Ren) and (�) By simultaneous indution on the struture of of derivations.(W) By indution on the struture of derivations, using Lemma 3.10(1) toshow that provability of onstraint premises is preserved.48



(InI) For larity, we abbreviate the substitution fx ug by �. Proof by in-dution on the struture of derivations, using Lemma 3.10(3) to show thatu :=S v implies �(u) :=�(S) �(v) in all rule instanes with assertions u :=S v aspremises, and likewise for premises of the form u!S v. The most interestingases are the ones whih introdue proess eigenvariables, e.g.,� (Case of (jL)) hSi�; u : AjB � � is onluded from hS; u := X 0jY 0i�; X 0 :A; Y 0 : B � �. By (Ren), there is a derivation of hS; u := X 00jY 00i�; X 00 :A; Y 00 : B � �, where X 00 and Y 00 are distint from X and do not be-long to afv(u). By indution hypothesis, we have h�(S); u := X 00jY 00i�; X 00 :�(A); Y 00 : �(B) � �(�). We then onlude by (jL).(InN ) For larity, we abbreviate the substitution fx mg by �. The proofproeeds by indution on the struture of derivations and ase analysis on thelast rule used, using Lemma 3.10(3) to show that all assertions that ouras premises of rule instanes in the derivation are preserved. We present adetailed proof for one of the spatial rules, the (I) and (TL) rules, and allthe quanti�er rules. In eah ase, note that the struture of the derivation ispreserved by the transformation.� (Case of (jR)) hSi� � u : AjB;� is onluded from hSi� � t : A;� andhSi� � v : B;� and u :=S tjv. By indution hypothesis, we have h�(S)i� ��(t) : �(A); �(�) and h�(S)i� � �(v) : �(B); �(�). By Lemma 3.10, wehave �(u) :=�(S) �(t)j�(v). We onlude by (jR).� (Case of (TL)) Suppose the instane of (TL) is not simple. Then hSi�; u :A � � is obtained by (TL) from hSi�; u0 : A0 � �, where (n$p)A �S A0and (n $ p)u �S u0. By indution hypothesis, there is a derivation ofh�(S)i�; �(u0) : �(A0) � �(�). By Lemma 3.19(1), we have �(A0) ��(S)�((n$ p)A) = (�(n)$ �(p))�(A). By Lemma 3.10, we have �(u0) ��(S)�((n$p)u) = (�(n)$�(p))�(u). We then obtain the onlusion by (TL).In the ase where the instane of (TL) is simple, we an along similar linesobtain a derivation of size equal to one for h�(S)i�(�); �(u) : �(A) � �(�)by instantiating every sequent in the given derivation with �.� (Case of (I)) hSi� � � is obtained by (I) from hS; u := (�z)X ; z#Ni���, where z and X do not our free in the onlusion and u, and N is a�nite set of names not ontaining z.By (�) we may assume that z 6= x and z 62 afv(m). By indution hy-pothesis, we have h�(S); �(u) := (�z)X ; z# �(N)i�(�) � �(�). Let M =afv(�(N)). By (W), h�(S); �(u) := (�z)X ; z# �(N); z#Mi �(�) � �(�).Write S 0 M= h�(S); �(u) := (�z)X ; z#Mi. SineM = afv(�(N)) and z#S0 M ,we an verify that z#S0 �(N).By (CS) we have h�(S); �(u) := (�z)X ; z#Mi �(�) � �(�). Now, notethat z does not our free in �(S), in �(�), u or M , or in �(�), beauseit does not our free in m, nor in the onlusion of the original sequent.Hene, by (I), we obtain the onlusion h�(S)i�(�)� �(�).� (Case of (8R)) The sequent hSi� � u : 8z:A;� is onluded from thesequent hSi� � u : Afz yg;�, where y does not our free in the onlu-49



sion. By (Ren) we an assume that y does not our (free or bound) neitherin the initially given sequent nor in m. By indution hypothesis, we haveh�(S)i�(�) � �(v) : �(Afz yg); �(�). We have �fz zg(A)fz yg ���(Afz yg). By (�), h�(S)i�(�) � �(v) : �fz zg(A)fz yg; �(�). By(8R) we onlude h�(S)i�(�) � �(v) : �(8z:A); �(�), sine �(8z:A) =8z:�(Afz zg).� (Case of (IR)) We have the sequent hSi� � u : Iz:A;�, onludedby (I) from a derivation of hSi� � u : Afz ng;�, where u :=S (�n)vand n#S Iz:A. By indution hypothesis, we have h�(S)i�(�) � �(u) :�(Afz ng); �(�). By Lemma 3.10(3), we have �(u) :=�(S) (��(n))�(v).Note that �(Iz:A) �� Iy:�(Afz yg) for some y 62 afv(m; x) [ fv(A).Sine lfv(Iz:A) = lfv(Iy:Afz yg), we also have n#S Iy:Afz yg. Notethat lft(�(Iz:A)) = f�(n) j n 2 lft(Iz:A)g.So, by Lemma 3.10(3), we onlude �(n)#�(S) �(Iy:Afz yg). By (IR)and (�), we an build a derivation h�(S)i�(�) � �(u) : �(Iz:A); �(�),sine �(Afz yg)fy �(n)g �� �(Afz ng).� (Case of (8L)) We have a derivation of hSi�; u : 8z:A � � onludedfrom a derivation of hSi�; u : Afz ng � �. By indution hypothesis, wehave h�(S)i�(�); �(u) : �(Afz ng) � �(�). By (�) and (8L), we on-lude h�(S)i�(�); �(u) : �(8z:A) � �(�), sine we have that �(8z:A) ��8y:�(Afz yg) for some y 2 afv(m; x) [ fv(A) and we an verify that�(Afz yg)fy �(n)g �� �(Afz ng).� (Case of (IL)) Similar to (IR).Lemma 5.5 Every sequent of the form hSi�; u : A � u : A;�, where A isnot atomi, has a ut- and ontration-free derivation.Proof. By indution on the struture of the formula A we show that thissequent has a derivation in the stated onditions: in the base ase the sequentis itself an instane of (Id). We show a few ases:� (Case of A = A1jA2) By indution hypothesis, there are derivations ofhS; u := X jY i�; X : A1; Y : A2 � X : A1;� and hS; u := X jY i�; X : A1; Y :A2 � Y : A2;�. By (jR) we get hS; u := X jY i�; X : B1; Y : B2 � u :A1jA2;�. We then onlude by (jL).� (Case of A = A1 . A2) By indution hypothesis, there are derivations ofhSi�; X : A1 � X : A1;� and hSi�; X : A1; X ju : A2 � X ju : A2;�. By (.L)we get hSi�; u : A; X : A1 � X ju : A2;�. We onlude by (.R).� (Case of A = Ix:B) Let N be the set of all name and propositional vari-ables ourring free in the given sequent. Let hS 0i M= hS; u := (�y)X ; y#Ni,where X and y are also hosen not free in the sequents under onsideration.By indution hypothesis, hS 0i�; u : Bfx yg � v : Bfx yg�. Note thaty#S0 Ix:B and u :=S0 (�y)X . We onlude by (IL), (IR), and (I).Lemma 8.3 (Basi Simpli�ation) Assume (n $ m)u :=S u0 and (n $
m)A +S A0, � +S �0 and � +S �0. Then we have:50



(1) If `1 hSi� � u : A;� in S then `1 hSi�0 � u0 : A0;�0 in S1.(2) If `1 hSi�; u : A � � in S then `1 hSi�0; u0 : A0 � �0 in S1.Proof.We prove (1), the proof for (2) is similar. The proof rests on the followingobservation: if there is a derivation of hSi� � u : A;� built just from (Id),(TL) and (TR), then there are formulas B and B0 suh that � = �l; t : B andu : A;� = t0 : B0;�r and �B �S �B0 and �t :=S �t0, hene ��1�B �S B0.Lemma 5.8 (Simpli�ation) Assume (n$m)u :=S u0 and (n$m)A +SA0, � +S �0 and � +S �0. Then the following size-preserving proof priniplesare admissible:(1) If `n hSi�� u : A;� in S then `n hSi�0 � u0 : A0;�0 in S1.(2) If `n hSi�; u : A � � in S then `n hSi�0; u0 : A0 � �0 in S1.The resulting derivations are simple and normalized. Moreover, if the originalderivations are ut-free then the resulting ones are also ut-free.Proof. The proof proeeds by mutual indution on the size of the derivations(1) `n hSi� � u : A;� and (2) `n hSi�; u : A � �. We show the proof for(1), the ase of (2) is handled in a similar way.(Case of (1)). Assume `n hSi� � �; u : A. Possible ways of deriving thissequent are: (1) the last rule is a logial rule ating on a formula in � or �,(2) the last rule is a world rule ating on S or (I), or (3) the last rule is (Id),(Cut) or a logial right rule ating on the prinipal formula u : A.(Subase 1) The result follows from the indutive hypothesis, possibly using(Ren) in the (8R) ase.(Subase 2) If the last rule is some world (S�) rule, the result is an immediateonsequene of the indution hypothesis. If the last rule is (I), the sequenthSi� � u : A;� is onluded from `n�1 hS; v := (�x)X ; x#Ni� � u : A;�.By (Ren), there is a derivation `n�1 hS; v := (�y)X ; y#Ni� � t : A;�, wherey is hosen not free neither in the original sequent, nor in �0;�0; u0 : A0. Byindution hypothesis, we onlude `n�1 hS; v := (�y)X ; y#Ni�0 � u0 : A0;�0.By (I), hSi�0 � u0 : A0;�0 is obtained. We now address (Subase 3).� (Case of (Id)) By Lemma 8.3(1).� (Case of (Cut)) We have hSi� � �; u : A onluded from `n�1 hSi� ��; u : A; v : B and `n�1 hSi�; v : B � �; u : A. Let B +S B0. By indutionhypothesis, we have `n�1 hSi�0 � �0; u0 : A0; u : B0 and `n�1 hSi�0; u :B0 � �0; u0 : A0. We then onlude by (Cut).� (Case of (CR)) We have hSi� � �; u : A onluded from `n�1 hSi� ��; u : A; u : A. By the indution hypothesis, we have `n�1 hSi�0 � �0; u0 :A0; u : A00, where A +S A00. Again by indution hypothesis, we onlude`n�1 hSi�0 � �0; u0 : A0; u0 : A0, sine A00 +S A0. We then onlude by (CR).� (Case of (TR))We onsider �rst the ase where the appliation of (TR) isnot simple. We have hSi�� u : A;� onluded from `n�1 hSi� � v : B;�,where B �S (p$ q)A and v :=S (p$ q)u. Hene (p$ q)B �S A and(p$q)v :=S u. By Lemma 3.19(2) there is B0 suh that (p$q)B +S B0 and51



A +S B0. By indution hypothesis, we onlude `n�1 hSi�0 � u : B0;�0.Sine (n $ m)A +S A0 we also have (n $ m)B0 +S A0. Again by theindution hypothesis, we onlude `n�1 hSi�0 � u0 : A0;�0. Otherwise,suppose the appliation of (TR) is simple. Then, we have `1 hSi� � u :A;�. By Lemma 8.3(1), we onlude `1 hSi�0 � u0 : A0;�0.� (Case of (^R)) We have A = B ^C and hSi� � �; u : A onluded from`n�1 hSi� � �; u : B and `n�1 hSi� � �; u : C. We have A0 = B0 ^ C 0with (n$m)B +S B0 and (n$m) +S C 0. By indution hypothesis, wehave `n�1 hSi�0 � �0; u0 : B0 and `n�1 hSi�0 � �0; u0 : C 0. By (^R), weonlude `n hSi�0 � �0; u0 : A0.� (Case of ()R))We have A = B ) C and hSi� � �; u : A onluded from`n�1 hSi�; u : B � �; u : C. We have A0 = B0 ) C 0 with (n$m)B +S B0and (n$m) +S C 0. By indution hypothesis, we have `n�1 hSi�0; u0 : B0 ��0; u : C. By indution hypothesis again, `n�1 hSi�0; u0 : B0 � �0; u0 : C 0.By ()R), we onlude `n hSi�0 � �0; u0 : A0.� (Case of (jR)) We have A = BjC and hSi� � �; u : A onluded fromhSi� � �; t : B and hSi� � �; v : C, where tjv :=S u. We have A0 = B0jC 0with (n$m)B +S B0 and (n$m) +S C 0 and u0 :=S (n$m)u :=S (n$
m)tj(n$m)v. By indution hypothesis, we have hSi�0 � �0; (n$m)t : B0and hSi�0 � �0; (n$m)v : C 0. By (jR), we onlude `n hSi�0 � �0; u0 : A0.� (Case of (.R)) We have A = B . C and hSi� � �; u : A onluded from`n�1 hSi�; X : B � �; v : C and v :=S X ju, where X does not our in theonlusion. We have A0 = B0 .C 0 with (n$m)B +S B0 and (n$m) +S C 0.By indution hypothesis (twie) we have `n�1 hSi�0; (n $ m)X : B0 ��0; (n$m)v : C 0.By (InI) with fX (n$m)X g and indution hypothesis, we have `n�1hSi�0; X : B0 � �0; X jv : C 0, sine ((n$m)v)fX (n$m)X g :=S ((n$
m)X ju)fX (n$m)X g :=S X ju0, beause u0 :=S (n$m)u by assumption.By (.R), we onlude `n hSi�0 � �0; u0 : A0.� (Case of (�R)) We have A = �B and hSi� � �; u : A onluded from`n�1 hSi� � �; v : B and t!S v. We have A0 = �B0 where (n$m)B +SB0. By indution hypothesis, `n�1 hSi�0 � �0; u0 : B0. By (�R), we onlude`n hSi�0 � �0; u0 : A0, sine u = (n$m)t!S (n$m)v by (Swap Red).� (Case of (rR)) We have A = qrB and hSi� � �; u : A onludedfrom `n�1 hSi� � �; v : B and t :=S (�q)v. We have A0 = q

0rB0 with
q
0 :=S (n $ m)q and (n $ m)B +S B0. By indution hypothesis, `n�1hSi�0 � �0; (n$m)v : B0. By (rR), we onlude `n hSi�0 � �0; u0 : A0,sine (�q

0)(n$m)v :=S u0 :=S (n$m)u.� (Case of (�R)) Similar to (rR).� (Case of (IR)) We have A = Ix:B and hSi� � u : A;� onludedfrom `n�1 hSi� � u : Bfx pg;� where p#S Ix:B, and u :=S (�p)v.By (�) we an assume that x is not free in n;m or S, so that A0 =Ix:B0 with (n$m)Bfx (n$m)xg +S B0. Let (n$m)Bfx pg +SB00, by indution hypothesis we onlude `n�1 hSi�0 � u0 : B00;�0. Wehave (n $ m)Bfx (n $ m)xgfx (n $ m)pg �S (n $ m)Bfx pg.52



By Lemma 3.19(1), we have (n $ m)Bfx pg +S B0fx (n $ m)pg.Hene B0fx (n$m)pg �S B00, and atually B00 +S B0fx (n$m)pg,sine both formulas are normalized. By indution hypothesis again, wehave `n�1 hSi�0 � u0 : B0fx (n $ m)pg;�0. By (IR), we onlude`n hSi�0 � �0; u0 : A0, sine by Lemma 3.10(3) (n $ m)p#S A0, andu0 :=S (n$m)u :=S (�(n$m)p)(n$m)v.� (Case of (8R)) We have A = 8x:B and hSi� � u : A;� onludedfrom `n�1 hSi� � u : Bfx yg;�, where y is not free in the onlusion,and by (Ren) we an also assume that y is not free in �0;�0; A0; u0. By(�) we an assume that x does not our in n;m; S, so that A0 = 8x:B0where (n $ m)Bfx (n $ m)xg +S B0. By Lemma 3.19(1), we obtain(n$m)Bfx (n$m)yg +S B0fx yg. By (InN ) with fy (n$m)ygwe have `n�1 hSi� � u : Bfx (n$m)yg;�. Sine (n$m)Bfx (n$
m)yg +S B0fx yg, by indution hypothesis, we have `n�1 hSi�0 � u0 :B0fx yg;�0. By (8R) we onlude `n hSi�0 � u0 : A0;�0.Lemma 5.13 (Inversion)Proof. By indution on the size of the derivation of the given sequents andase analysis in the last rule used. We present a detailed argument for (7), theother ases are handled in a similar way.If `n hSi�; u : AjB � � then `n hS; u := X jY i�; X : A; Y : B � �, for any
X ; Y not free in the �rst sequent.We onsider three subases: (a) If the last step is an appliation of (jL) to thedistinguished formula u : AjB, the proof is onluded.(b) The last step in an appliation of (SL) to the distinguished formula u : AjB.Hene we have `n�1 hSi�; u0 : A0jB0 � �, where (n$m)A +S A0jB0 andu0 :=S (n$m)u. By indution hypothesis, we have `n�1 hS; u0 := X jY i�; X :A0; Y : B0 � �. By (InI) we have `n�1 hS; u0 := (n$m)X j(n$m)Y i�; (n$
m)X : A0; (n $ m)Y : B0 � �. By Lemma 5.8(2) (twie), we have `n�1hS; u0 := (n$m)X j(n$m)Y i�; X : A; Y : B � �, sine (n$m)B0 +S B,(n$m)A0 +S A and all formulas in � and � are normalized. By (W) and(CS), we onlude `n�1 hS; u := X jY i�; X : A; Y : B � �.() Otherwise, the sequent hSi�; u : AjB � � is onluded from k = 1 or k = 2premises of the form hSii�i; u : AjB � �i, for i = 1; : : : ; k and possibly somepremises of the form S ` , by an appliation of some inferene rule (R ) atingeither on a prinipal formula in � or �, or in hSi. By indution hypothesis,we onlude `n�1 hSi; u := X jY i�i; X : A; Y : B � �i for i = 1; : : : ; k, where
X and Y an be hosen fresh with respet to S, Si, �, �, �i and �i (so thatany eigenvariable ondition required for applying (R ) still holds). By (R ), weonlude `n hS; u := X jY i�; u : A; u : B � �.Lemma 5.14 (Contration Elimination) In the system CF the followingsize-preserving proof priniples are admissible, provided the sequents shownare normalized 53



`n hSi� � u : A; u : A;�`n hSi�; u : A � � (CR) `n hSi�; u : A; u : A � �`n hSi�; u : A � � (CL)The resulting derivations are normalized. Moreover, if the original derivationsare ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. The priniples (CL) and (CR) are proved by mutual indution on thesize of the respetive derivations. If the last rule of the derivation is a world(S�) rule, (Cut), or a logial rule other than (Id), applying to some formulain � or �, the result follows diretly by the indution hypothesis. If last ruleis (Id), identifying atomi formulas in � or �, then hSi� � � is an instaneof (Id). The onlusion an then be obtained by adding the required formulasto the left and right ontext of this sequent. Otherwise, we onsider the aseof eah possible rule ating on one of the distinguished ourrenes of u : A.We onsider a few ases for (CR), (CL) is handled in a similar way.� (Case of (Id)) Immediate, for just one of the u : A an be relevant to (Id).� (Case of (SR) If this ourrene of (SR) is simple, then just one of theourrenes of u : A is used in the (Id) axiom below it, so we immediatelyonlude `1 hSi� � u : A;�. Otherwise, we have that hSi� � u : A; u :A;� results from `n�1 hSi� � u0 : A0; u : A;� where (n$m)u :=S u0 and(n$m)A +S A0. By Lemma 5.8(1), we have `n�1 hSi�� u0 : A0; u0 : A0;�.By indution hypothesis, we onlude `n�1 hSi� � u0 : A0;�. By (SR) weonlude `n hSi� � u : A;�.� (Case of (jRK)) We have A = BjC and hSi�� u : A; u : A;� onludedfrom `n�1 hSi� � v : B; u : A; u : A;� and `n�1 hSi� � t : C; u : A; u :A;� and vjt :=S u. By indution hypothesis, we have `n�1 hSi� � v : B; u :A;� and `n�1 hSi� � t : C; u : A;�. We onlude by (jRK).� (Case of (.R)) We have A = B . C and `n hSi� � u : A; u : A;�onluded from `n�1 hSi�; X : B � v : C; u : A;� and v :=S X ju. ByLemma 5.13(6), we have `n�1 hSi�; X : B; Y : B � v : C; Y ju : C;� forsome fresh Y . By (InI) we get `n�1 hSi�; X : B; X : B � v : C; X ju : C;�.By Lemma 5.8(1) with the identity permutation, we onlude `n�1 hSi�; X :B; X : B � v : C; v : C;�, sine v :=S X ju. By indution hypothesis, we get`n�1 hSi�; X : B � v : C;�. The onlusion follows by (.R).� (Case of (8R)) We have A = 8x:B and hSi� � u : A; u : A;� on-luded from `n�1 hSi� � u : Bfx yg; u : A;�, where y is not free inthe onlusion. By Lemma 5.13(5), we have `n�1 hSi� � u : Bfx yg; u :Bfx zg;�, where z is not free in the onlusion. By (InN ) with fz yg,we have `n�1 hSi� � u : Bfx yg; u : Bfx yg;�. By the indutionhypothesis, we get `n�1 hSi� � u : Bfx yg;� and we onlude by (8R).� (Case of (IRK)) We have A = Ix:B and hSi� � u : A; u : A;� on-luded from `n�1 hSi� � u : Bfx pg; u : A; u : A;� where p#S Ix:B,and t :=S (�p)v. By indution hypothesis, `n�1 hSi� � u : Bfx pg; u :A;�, we then onlude by (IRK).54


