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uliar 
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al 
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ts.Our �rst emphasis is on distributed systems, meaning that we should be able totalk about properties of distin
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h as subsystems that reside atdi�erent lo
ations, and subsystems that privately share hidden resour
es. Forthis purpose, we introdu
e spatial (as opposed to temporal) logi
al operators;for example, we may talk about a property holding somewhere (as opposed tosometimes). Our se
ond emphasis is on 
on
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that unambiguously talks about 
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urren
y and (nowadays) priva
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In Part I of this paper [2,4℄ we study this intended model, whi
h is used hereto establish the soundness of the logi
al rules. The 
entral fo
us of this PartII, however, is proof theory. We regularize and generalize the logi
s introdu
edin [1,10,11℄, and we prove a 
ut-elimination result for the �rst-order fragment,in
luding 
ut-elimination for a fresh name quanti�er (
f. Nominal Logi
 [18℄).A formula in our logi
 des
ribes a property of a parti
ular part of a 
on
urrentsystem (a world) at a parti
ular time; therefore it is modal in spa
e as well as intime. In our sequents, formulas are indexed by the worlds they predi
ate over[21℄, so a sequent 
an talk about many distin
t worlds at on
e. Ea
h sequentin
orporates also a �nite set of 
onstraints over the worlds, in
luding pro
essredu
tion and 
ongruen
e 
onstraints. In general, the 
onstraint stru
ture 
anbe fashioned as an algebra [24℄; whi
h in our 
ase is a relatively 
omplexpro
ess algebra.The fragment of our logi
 that deals with pro
ess 
omposition is relativelystraightforward: 
omposition shows up in the logi
 as a tensor, whi
h is stronglyrelated to linear 
onne
tives. The sequent-style presentation of this fragmentshould look relatively familiar, ex
ept for the 
onstraints part. The relevant
onstraints are essentially 
onstraints over a (
on
urren
y) monoid, with somespe
i�
 intera
tions with redu
tion. Along these lines, we 
ould also easily addan expli
it stru
ture of lo
ations to the pro
ess 
al
ulus, and related logi
aloperators, as done in [10℄.Far less obvious is what to do about hiding of private resour
es, whi
h isrepresented in �-
al
ulus by the name hiding operator. The hiding of a namein a pro
ess should 
orrespond, logi
ally, to a \hiding quanti�er" that bindsa private name in a formula; su
h a formula 
ould then des
ribe the use ofthat private name in the pro
ess. The study of su
h a quanti�er, from a logi
alpoint of view, was started in [5,1℄, and later independently in [11℄. Our 
urrentunderstanding is that it is best to de
ompose su
h a hiding quanti�er into twooperators: a modal version of the fresh quanti�er of Gabbay and Pitts [14℄,and a logi
al operator, 
alled revelation [11℄, that relates to name hiding instrong analogy to the way tensor relates to pro
ess 
omposition. A simple
ombination of fresh quanti�
ation and revelation then yields hiding, in theintuitive sense that if something is hidden, we 
an 
hoose to name it (revealit) by any name that is fresh.Many natural examples of use of our logi
 involve re
ursive formulas. Twotypi
al examples of re
ursion that attra
t us in our 
ontext are: (1) a pro
esshaving an arbitrary number of hidden resour
es, and (2) a pro
ess generatingan in�nite supply of fresh names. Parti
ularly, the intera
tion of re
ursion andfreshness is semanti
ally quite 
hallenging, and was investigated in Part I.Stru
turally, our logi
 
onsists of a 
olle
tion of left-right rules for logi
aloperators, in
luding essentially the standard rules of 
lassi
al sequent 
al
ulus,plus the ones for temporal and spatial operators. In addition, there are spe
ial2



hSi�� � Sequents, of the formhSiu1 : A1; : : : ; un : An � v1 : B1; : : : ; vm : BmAi; Bi Formulasui; vj Indexes, members of a pro
ess algebra (the worlds)S �nite set of 
onstraints (e.g., equations, redu
tions)Fig. 1. Sequents.rules about the worlds: they add meaning to the logi
al operators, allowingus to 
apture deep properties of pro
ess 
al
uli without interfering very mu
hwith the 
ore left-right rules.We highlight here the left and right rules for 
omposition, AjB, whi
h in
ludemany of the interesting features of our sequents.Sequents (Figure 1) have the form hSi� � � , where hSi is a �nite set of
onstraints, and � , � are multisets of indexed formulas. Constraints in
ludeequality 
onstraints, u := v, stating that u and v represent stru
turally 
on-gruent pro
esses. [X and Y not free in the 
on
lusion℄hS; u := X jY i�; X : A; Y : B � �hSi�; u : AjB � � (jL)hSi� � v : A;� hSi� � t : B;� u :=S vjthSi� � u : AjB;� (jR)The (jR) rule says: if we 
an show that index v satis�es formula A (i.e, thatA holds at world v, written v : A), and that t satis�es B, and if we 
anshow from the 
onstraints in S that u is stru
turally 
ongruent to vjt, thenwe 
an 
on
lude that u satis�es AjB. Hen
e, the reading of this logi
al rulesin
orporates mu
h of the intended satisfa
tion semanti
s [21℄. The (jL) rulefeatures the assumption \X and Y not free in the 
on
lusion (of the rule)".This assumption means, in parti
ular, that X and Y are 
ompletely generi
and un
onstrained variables. A reading is: to show that u : AjB entails �,we must show that for an arbitrary de
omposition of u as X jY , we have that
X : A and Y : B entail �.Composition also has a number of \rules about the world", as mentionedabove. Here is a simple one:hS; u := 0i� � � ujv :=S 0hSi� � � (Sj0)Note that these world rules do not involve the logi
al 
onne
tives (we have� � � above and below), and instead a�e
t the hSi part. In most pro
ess3




al
uli we have that if ujv is stru
turally 
ongruent to 0 then both u and v arestru
turally 
ongruent to 0. This property does not derive from (jL) and (jR),but is embedded in (Sj0). The rule reads as follows: if we 
an already inferfrom the S part of the 
onstraints that ujv := 0, and we have an additional
onstraint that u := 0, that 
onstraint is redundant and we 
an remove it. Inthis style, we 
an in
orporate many pe
uliar properties of pro
ess 
al
uli asworld rules; many su
h rules analyze the 
onsequen
es of an equation betweentwo spatial operators (above, j vs. 0), and are listed in Figure 12. All su
hrules have a similar reading in terms of eliminating \redundant" 
onstraints.Be
ause of the regular left-right stru
ture of our 
ore rules, 
ut elimination fallslargely along predi
table lines; the indexes do not hinder, and rules su
h as(Sj0) 
an be dealt with separately. The main diÆ
ulty is in the 
ut elimination
ase for the freshness quanti�er. As in Nominal Logi
, the result depends onan \equivarian
e" property of the logi
 [18℄, whi
h is used to perform an �-
onversion of fresh names over a whole derivation. Equivarian
e is embedded,in our 
ase, in the (TL/TR) rules in Figure 7. Expressing these rules in thegeneral 
ase of open formulas, requires introdu
ing expli
it transpositions overformulas, whi
h entail some te
hni
al 
ompli
ations.Related Work A logi
 for a pro
ess 
al
ulus in
luding a tensor operatorand a hiding quanti�er was developed by Lu��s Caires in [5,1℄, but a satisfa
-tory semanti
 treatment for the latter 
onne
tive was not a
hieved before the
ontributions of [11,2℄. Andy Gordon was a 
oauthor with Lu
a Cardelli ofinitial versions of spatial logi
s for the Ambient Cal
ulus [10,11℄, whi
h alsoinvestigated 
onne
tions with linear logi
. The present paper 
ontains the �rstpresentation of su
h a logi
 as a proper sequent 
al
ulus. Moreover, we nowtarget the logi
 towards a more standard �-
al
ulus.The �rst main di�eren
e between our logi
 and standard logi
s of 
on
urren
y(e.g. [15℄) is the presen
e in our 
ase of a tensor operator that 
orrespondsto pro
ess 
omposition. Usually, those other logi
s require formulas to denotepro
esses up to bisimulation, whi
h is diÆ
ult to re
on
ile with a tensor oper-ator that 
an make distin
tions between bisimilar pro
esses (however, su
h anoperator was anti
ipated by Dam [12℄). In our 
ase, we only require formulas todenote pro
esses up to stru
tural equivalen
e, so that a tensor operator makeseasy sense. Sangiorgi, Hirshko� and Lozes have shown, for a 
losely relatedlogi
, that the equivalen
e indu
ed by the logi
 is then essentially stru
turalequivalen
e [20,16℄. Compositional proof systems for behavioral equivalen
eson the �-
al
ulus have also been re
ently proposed by Dam [13℄.The work of Gabbay and Pitts on the freshness quanti�er [14℄ has be
ome
entral to our logi
. The work of O'Hearn and Pym on Bun
hed Logi
s [17℄and of Reynolds on Separation Logi
 [19℄ is 
losely related to ours, at least inintent. Spatial logi
s for trees and graphs have also been investigated in [9,7℄.4



The style in whi
h our logi
 is formalized is an extension of work by AlexSimpson [21,22℄, and is also related, at least super�
ially, to labeled dedu
tivesystems [24℄. The use of formal transpositions, adopted here as a te
hniquefor manipulating freshness 
onstraints, turned out to be useful also in the set-ting of programming languages for semi-stru
tured data [8℄. A de
idable and
omplete propositional fragment of a related logi
 has been re
ently investi-gated [6℄.Stru
ture of the paper In Se
tion 2 we re
all the syntax and semanti
sof our logi
 of Part I. In Se
tion 3 we present the various ingredients that
onstitute the proof system. In Se
tion 3.1 we introdu
e the �-algebra thatis used in the 
onstraints and indexes of our sequents. A �-algebra is anabstra
tion of �-
al
uli, in
orporating most of the 
hara
teristi
 propertiesof 
omposition and hiding. In Se
tion 3.5 we introdu
e our sequent 
al
ulus,whi
h 
an be shown sound by an interpretation in the model of Part I [2℄. InSe
tion 4 we show how re
ursive properties 
an be fully handled inside ourlogi
. In Se
tion 5 we investigate proof theory, and in parti
ular 
ut eliminationfor the �rst-order fragment of our logi
. In Se
tion 6 we go through a set ofbasi
 examples, to illustrate the expressive power of the logi
. In the Appendix,we 
olle
t proofs of results.2 The Logi
 and its Semanti
sIn this se
tion, we review the syntax and semanti
s of our spatial logi
 for
on
urren
y. Our intended model [4℄ is a �xed nominal pro
ess 
al
ulus (we useasyn
hronous �-
al
ulus) over a set of pure names � ; let P be the 
olle
tionof su
h pro
esses. On P is de�ned the relation � of stru
tural 
ongruen
e,that equates pro
esses that possess the same spatial stru
ture, and the binaryrelation ! of redu
tion, that 
aptures the dynami
 behavior of pro
esses. Aproperty is a set of pro
esses; a subset of P. Then, a formula of our logi
denotes a property, namely, it denotes the 
olle
tion of pro
esses satisfyingthat formula.Given the sets V and Z of name variables and propositional variables, re-spe
tively, formulas are de�ned in Fig. 2. They in
lude 
lassi
al propositional
onne
tives, F, ^, ), and the basi
 spatial operators: AjB (the tensor, rep-resenting the parallel 
omposition of pro
esses), 0 (the unit of the tensor,representing the 
olle
tion of void pro
esses), and A . B (the linear impli
a-tion asso
iated with the tensor). This last operator 
orresponds to 
ontext-system spe
i�
ation of pro
esses, whi
h are the 
on
urren
y-theory equivalentof pre/post 
onditions.First-order quanti�
ation allows us to quantify over the set of pure names5



m;n;p ::= Name Terms (m;n;p 2 N )x Name variable (x 2 V)(m$n)p Transposition termA;B ::= Formulas (A;B 2 �)F False(m$n)A TranspositionA ^B Conjun
tionA) B Impli
ation0 VoidAjB CompositionA . B Guarantee
nrA Revelation
n�A Hiding
mhni Message�A Next8x:A First-order universal quanti�
ationIx:A Freshness quanti�
ationX Propositional variable (X 2 X )8X:A Se
ond-order universal quanti�
ationFig. 2. Formulas� of the �-
al
ulus. Pure names (n;m; p 2 �) are represented in our logi
by name terms: a name variable x denotes some name, while a transpositionterm (m$n)p denotes the name obtained by applying the transposition ofthe names denoted by the name terms m and n to the name denoted by thename term p. The use of name terms in formulas and the presen
e of a expli
ittransposition formula (m$n)A are some 
onvenient additions we introdu
ehere to the basi
 logi
 of [4,3℄ (
f., transposition types in [8℄). We do notallow pure names to appear in the syntax of formulas: only name variablesand their transpositions are used there. As dis
ussed below, these additions
an be integrated in a fairly straightforward way into the semanti
 frameworkalready developed in [4℄.Name hiding indu
es a pair of adjun
t logi
al operators. The formula nrA6



means that a hidden name, denoted by the name term n, exists in a restri
teds
ope that satis�es property A. It is mat
hed by a �-
al
ulus term (�n)uprovided that u satis�es A and n denotes the name n (see the semanti
 
lausefor nrA in Fig. 3, inferen
e rule for (rR) in Fig. 8, and the example inSe
tion 6.5; see [11,4℄ for further dis
ussion.) The formula A�n is the logi
aladjun
t of nrA, indi
ating that A 
an be satis�ed by a pro
ess after hidingthe name denoted by n.The notion of fresh name is introdu
ed by a quanti�er Ix:A; a pro
ess Psatis�es Ix:A if P satis�es A for some name fresh in the pro
ess P and inthe formula Ix:A. Ix:A is de�ned along the lines of the freshness quanti�erof Gabbay-Pitts [14,18℄, and its semanti
s is designed to be 
ompatible withre
ursive formulas.A logi
al operator nhmi allows us to assert that a pro
ess 
onsists pre
iselyof a message m over a 
hannel n, giving us some minimal power to observeits behavior. A next-step temporal operator, �A, allows us to talk about apro
ess after a single (unspe
i�ed) redu
tion step. Finally, we have a se
ond-order quanti�er and related propositional variables.In 8x:A, Ix:A (and 8X:A), the variables x (and X) are bound with s
opethe formula A. We assume de�ned on formulas the standard relation �� of�-
onversion (safe renaming of bound variables), but we never impli
itly takeformulas \up to �-
onversion": our manipulation of variables via �-
onversionsteps is always quite expli
it. The set fv(A) of free name variables in A, andthe set fpv(A) of free propositional variables in A, are de�ned in the usualway. Then, we de�ne the set of logi
ally free variables of a formula A bylfv(A)M=fv(A)[ fpv(A). If m is a name term and A is a formula then Afx mgdenotes the formula obtained by repla
ing of all free o

urren
es of x in A bythe name term m, renaming bound name variables as needed to avoid 
aptureof name variables o

urring in the name term m. We also de�ne the set ft(A)of free terms in A, to be the set of all maximal name terms in A that do not
ontain o

urren
es of variables bound in A; and the set of logi
ally free termsof a formula A by lft(A)M=ft(A) [ fpv(A).We now review the semanti
s of our logi
; if needed, further details 
an befound in [4℄. The denotation of formulas is de�ned in terms of sets of pro
essesthat satisfy 
ertain natural 
losure 
onditions. These 
onditions are motivatedby the following fa
ts. First, we expe
t satisfa
tion to be 
losed under stru
-tural 
ongruen
e (pro
esses with the same spatial stru
ture must satisfy thesame formulas). Se
ond, a property should depend only on a �nite set of rele-vant names (related to the denotation of the free name variables of a formula);su
h a set of names is 
alled the support of the property. The 
olle
tion of allproperties has the stru
ture of a Boolean algebra under set in
lusion, so wenaturally get propositional 
onne
tives in the logi
. The 
olle
tion of all prop-erties has also the stru
ture of a 
ommutative quantale, due to the parallel7




omposition operator over pro
esses; this indu
es the basi
 spatial 
onne
tivesof the logi
. Other pro
ess operators indu
e further spatial 
onne
tives.The support of a set of pro
esses is de�ned using name transpositions. Atransposition fm$ng a
ts on a pro
ess P by swapping all o

urren
es (freeand bound) of the names n and m in the pro
ess P . From [4℄, we re
allDe�nition 2.1 (PSet) A property set is a set of pro
esses 	 su
h that(1) For all Q, if P 2 	 and P � Q then Q 2 	.(2) There is a �nite set of names N su
h that, for all n;m 62 N , if P 2 �then Pfn$mg 2 �.We denote by P the set of all Psets. Every Pset � 2 P has a least support [18,4℄,that we denote by supp(�). Hen
e, in our semanti
s, the denotation of anyformula A is given by a Pset JAK 2 P. Sin
e a formula A may 
ontain freeo

urren
es of propositional and name variables, its denotation depends onthe denotation of su
h variables, whi
h is given by a valuation. A valuationv is a �nite mapping assigning to ea
h name variable in its domain a namein � (the set of �-
al
ulus pure names), and ea
h propositional variable in itsdomain a Pset in P. The appli
ation of transpositions to Psets and valuationsis de�ned pointwise [4℄. The following semanti
 
hara
terization for the \free"names of a formula A under a valuation [4℄ is also useful.De�nition 2.2 (Free Names under Valuation) If A is a formula, and va valuation for A, we de�ne the set fnv(A) of free names of A under v byfnv(A)M=[fv(x) j x 2 fv(A)g [[fsupp(v(X)) j X 2 fpv(A)gIntuitively, fnv(A) is basi
ally fn(v(A)) ex
ept that we set fn(X)M=supp(v(X))for any X 2 fpv(A), hen
e fnv(A) = fn(A) for 
losed A. The set fnv(A) isuseful in the de�nition of the semanti
s of the fresh name quanti�er, where thequanti�
ation witness must be fresh with respe
t to the property set denotedby a formula that in general may 
ontain free o

urren
es of propositional(and name) variables.The semanti
s of formulas is de�ned in Fig. 3. The denotation mapping J�Kvsatis�es 
ertain fundamental properties, listed in the next theorem.Theorem 2.3 For all formulas A and valuations v(1) JAKv 2 P with supp(JAKv) � fnv(A).(2) For all transpositions � , �(JAKv) = JAK�(v).(3) Let M = fnv(Ix:A) [ fn(P ). If P 2 JAKv[x p℄ for some p 62 M , thenP 2 JAKv[x p℄ for all p 62M .Proof. (1-2) By indu
tion on the stru
ture of the formula A; a straightforwardadaptation of the proof of Theorem 4.21 in [4℄. (3) A 
onsequen
e of (2).8



JxKv M= v(x)J(m$n)pKv M= fJmKv$JnKvgJpKvJFKv M= ;J(m$n)AKv M= fJmKv$JnKvgJAKvJA ^BKv M= JAKv \ JBKvJA) BKv M= fP j if P 2 JAKv then P 2 JBKvgJ0Kv M= fP j P � 0gJAjBKv M= fP j Exists Q;R: P � QjR and Q 2 JAKv and R 2 JBKvgJA . BKv M= fP j Forall Q: if Q 2 JAKv then P jQ 2 JBKvgJnrAKv M= fP j Exists Q: P � (�JnKv)Q and Q 2 JAKvgJA�nKv M= fP j (�JnKv)P 2 JAKvgJmhniKv M= fP j P � JmKvhJnKvigJ8x:AKv M= Tn2�JAKv[x n℄JIx:AKv M= Sn 62fnv(Ix:A)(JAKv[x n℄ n fP j n 2 fn(P )g)J�AKv M= fP j Exists Q: P ! Q and Q 2 JAKvgJXKv M= v(X)J8X:AKv M= T	2P JAKv[X 	℄Fig. 3. Denotation of terms and formulas.
3 The Proof SystemIn this se
tion, we present a sequent 
al
ulus based proof system for ourlogi
. The inferen
e rules of our system follow the pattern one expe
ts from aGentzen-style sequent 
al
ulus, that is, a system where there is a symmetri
pair of left and right introdu
tion rules for ea
h logi
al 
onne
tive. As dis-
ussed in the introdu
tion, sequents have the form hSi� � � , where hSi isa �nite set of 
onstraints, and �, � are multisets of index-tagged formulas.Indexes denote the worlds (the pro
esses) of our modal logi
. Su
h indexes areelements of the term �-algebra. 9



3.1 �-algebrasWe now introdu
e �-algebras, and 
onstraint theories over the term �-algebra.A �-algebra is a sorted algebra, with a sort for names, a sort for pro
esses,and a sort for 
olle
tions of pro
esses (properties), and equipped with thebasi
 pro
ess operations of 
omposition, name hiding and name transposition.Hen
e, many pro
ess 
al
uli are �-algebras, in parti
ular the asyn
hronous�-
al
ulus A� whi
h is the intended model of our logi
.De�nition 3.1 (�-algebra) A �-algebra is a stru
ture� = hL;P; C; 0; j;�; ($)L; ($)P ; ($)Cisu
h that L is a 
ountable set of labels (`), P is the set of pro
esses (P;Q;R),C is a 
olle
tion of properties (F;G), and� 0 (void) is a distinguished pro
ess in P� �j� (
omposition) is an operation P � P ! P� (��)� (name hiding, a.k.a. restri
tion) is an operation L � P ! P� (�$�)L� (transposition on labels) is an operation L � L� L ! L� (�$�)P� (transposition on pro
esses) is an operation L � L� P ! P� (�$�)C� (transposition on properties) is an operation L � L� C ! CWe refer to the L part of a �-algebra � by �L, and likewise for the remaining
omponents (e.g., �P). For example, the asyn
hronous �-
al
ulus A� is the�-algebra where A�L is the set of �-
al
ulus names, A�P is the set of �-
al
ulus pro
esses, and (m$n)P denotes the pro
ess fm$ng�P obtained byswapping the names m;n in the pro
ess P .Of parti
ular interest to us is the term �-algebra, whi
h supports the synta
-ti
al manipulation of (s
hemati
) pro
esses and names in a general way.De�nition 3.2 (Term �-algebra) Consider given a set V of names vari-ables, a set Z of pro
ess variables, and a set X of propositional variables.The term �-algebra is the free �-algebraP = hN ; I;F ; 0; j;�; ($)N ; ($)I; ($)Fiwhere N is the set of all terms freely built from the variables in V and nametransposition, F is the set of all terms freely built from the variables in X andname transposition, and I is the set of all terms freely built from the variablesin Z, name terms in N , and the pro
ess operations 0; j;� and ( $ )I. Inthe term �-algebra, the labels N are 
alled name terms, the pro
esses I are
alled indexes, and the properties F are 
alled propositional terms. We use10



the meta-variablesx; y; z 2 V (Name Variables)
X ; Y ; Z 2 Z (Pro
ess Variables)X;Y;Z 2 X (Propositional Variables) m;n;p 2 N (Name Terms)u; v; t 2 I (Indexes)F;G;H 2 F (Propositional Terms)
; Æ 2 G M=F [N � 2 T M=I [ GThe elements of the term �-algebra that we have 
alled indexes denote el-ements of the intended pro
ess algebra (pro
esses, the worlds of our modallogi
), while the name terms denote the pure names used in pro
esses. For ex-ample, x, (x$y)z and (x$((y$z)x))z are name terms, while X , (x$y)Xand X j(�(x$y)z)Y are indexes. N.B., in the term �-algebra, (m$n)P (re-spe
tively, (m$n)p) is a parti
ular index (respe
tively, name term) in whi
htransposition is interpreted as a formal operation.A propositional term F denotes a property (a 
olle
tion of pro
esses). Theintention is that the pro
ess denoted by the index u belongs to the propertydenoted by (n$m)F whenever the pro
ess denoted by (n$m)u belongs tothe property denoted by F .De�nition 3.3 (Interpretation) Given any �-algebra �, an interpretationJ of the term �-algebra into � is a triple of mappings JL : V ! �L andJP : Z ! �P , JC : X ! �C.Every interpretation J extends to the unique homomorphism Ĵ : P ! � of�-algebras in the standard way. Note that the term � algebra 
an be straight-forwardly interpreted into any nominal 
al
uli (e.g., the �-
al
ulus, the ambi-ent 
al
ulus), by mapping the (formal) operators of the term �-algebra intothe 
orresponding pro
ess model operators.De�nition 3.4 (Algebrai
 free variables) Given an index, name term, orpropositional term �, we denote by afv(�) its set of algebrai
 free (name, pro
essand property) variables, de�ned simply as the 
olle
tion of all the variables inV, Z and X o

urring in su
h terms.Remark 3.5 A variable x is algebrai
 free, in, e.g., the index (�x)0, while thename n is not free in the usual sense in the �-
al
ulus pro
ess (�n)0. In parti
-ular, a �-substitution a
ts on all algebrai
 free variables of indexes and nameterms. E.g., if uM=(�x)(X jY ), then ufx ygfX (�x)Z g = (�y)((�x)Z jY ).De�nition 3.6 (�-substitution) A �-substitution is an interpretation fromP into P.Every �-substitution � extends to the homomorphism �̂ : P ! P of term�-algebras that a
ts as a synta
ti
 substitution on indexes. We denote byfx ng the �-substitution that maps x into n and a
ts like the identity else-11



where, and likewise for fX ug and fX Fg. If IL is a mapping V ! N thenwe note by ILfx ng the mapping I 0L su
h that I 0L(z)M=I(z) for z 6= x andI 0L(x)M=n. Likewise, if J is an interpretation, we write J fx ngfX ug forthe interpretation that behaves like J ex
ept that it maps x to n and X to u.Usually, we write just � for the homomorphi
 extension �̂ of a �-substitution�.3.2 Constraint theoriesThe worlds of our logi
 relate to ea
h other both by spatial and temporal 
on-straints: spatial 
onstraints express that the pro
esses denoted by the equatedindexes have the same spatial stru
ture (
f. �-
al
ulus stru
tural 
ongruen
e),while temporal 
onstraints express that a pro
ess has a redu
tion to anotherpro
ess (
f. �-
al
ulus redu
tion). Intuitively, a 
onstraint theory de�nes a
lass of models for the spatial logi
, namely those models that satisfy all of itsspatial and temporal 
onstraints.De�nition 3.7 (Constraint and 
onstraint theory) A 
onstraint 
 is ei-ther an index, name or property equation, a redu
tion, a name or propertyapartness, de�ned by
 ::= Constraintsu := v Index equation (u; v 2 I)
n
:= m Name equation (n;m 2 N )

m#n Name apartness (m;n 2 N )F := G Property equation (F;G 2 F)
m#F Property apartness (m 2 N ; F 2 F)u! v Redu
tion (u; v 2 I)A 
onstraint theory is a �nite set of 
onstraints.An equation u := v states that the indexes u and v denote stru
turally 
on-gruent pro
esses, while a redu
tion u! v asserts that the pro
ess denoted bythe index u redu
es to the pro
ess denoted by the index v.In order to handle freshness 
onstraints expli
itly, we also introdu
e apartness
onstraints: m#n meaning that the name terms m and n denote distin
tnames, and m#F meaning that the name term m denotes a name distin
tfrom any name in the (�nite) support of the property (set of pro
esses) denotedby the propositional term F (so the name n is fresh in su
h a property).A 
onstraint F := G asserts that the propositional terms F and G denote thesame property. 12



(Basi
)� := �0 2 S ) � :=S �0 (Basi
 Equ)
# 
0 2 S ) 
#S 
0 (Basi
 Apart)u! v 2 S ) u!S v (Basi
 Red)(Spatial)uj0 :=S u (Sp Void)ujv :=S vju (Sp Par Comm)(ujv)jt :=S uj(vjt) (Sp Par Asso
)(�n)0 :=S 0 (Sp Res Void)(�n)(�n)u :=S (�n)u (Sp Res Res)(�m)(�n)u :=S (�n)(�m)u (Sp Res Comm)(�n)(uj(�n)v) :=S ((�n)u)j(�n)v (Sp Res Par)(Congruen
e)� :=S � (Cong Re
)� :=S �0 ) �0 :=S � (Cong Sym)� :=S �0; �0 :=S �00 ) � :=S �00 (Cong Trans)u :=S v ) ujt :=S vjt (Cong Par)u :=S v;m :=S n) (�m)u :=S (�n)v (Cong Res)
m

:=S n; r :=S q; 
 :=S 
0 ) (m$r)
 :=S (n$q)
0 (Cong Swap)
#S 
0; r :=S r
0;q :=S q

0 ) (r$q)
#S (r0$q
0)
0 (Cong Apart)Fig. 4. Closure of 
onstraint theories (Basi
, Spatial and Congruen
e).De�nition 3.8 (Closure of a 
onstraint theory) Given a 
onstraint the-ory S, the relations:=S � I � I Index Equality:=S � N �N Name Equality#S � N �N Name Apartness :=S � F �F Property Equality#S � N �F Property Apartness!S � I � I Index Redu
tionare indu
tively de�ned by the set of 
losure rules in Figs. 4-5.Closure rules axiomatize some basi
 stru
tural properties of our intendedmodels. For instan
e, rules in (Spatial) 
hara
terize the basi
 properties ofstru
tural 
ongruen
e; in parti
ular (Sp Res Par) expresses the usual nameextrusion property of �-
al
ulus. 13



(Apartness)
m#S 
;n#S 
 ) (m$n)
 :=S 
 (Swap Fresh)
m#S n) n#S m (Apart Sym)
#S Æ; 
 :=S 
0; Æ :=S Æ0 ) 
0#S Æ0 (Cong Apr)(Transposition)(n$m)0 :=S 0 (Swap Void)(n$m)(ujv) :=S (n$m)uj(n$m)v (Swap Par)(n$m)(�p)u :=S (�(n$m)p)(n$m)u (Swap Res)(n$m)(p$q)
 :=S ((n$m)p$(n$m)q)(n$m)
 (Swap Swap)(n$m)(n$m)� :=S � (Swap Inv)(n$n)� :=S � (Swap Id)(m$n)m :=S n (Swap App)u :=S (�n)t; u :=S (�m)v ) (n$m)u :=S u (Swap Erase)(Redu
tion)u!S t; v :=S u; t :=S w ) v !S w (Red Cong)u!S t) ujv !S tjv (Red Par)u!S t) (�n)u!S (�n)t (Red Res)u!S t) (n$m)u!S (n$m)t (Red Transp)Fig. 5. Closure of 
onstraint theories (Apartness, Transposition and Redu
tion).Remark 3.9 Let u be the index (�x)X j(�x)Z and v the index (�x)(X j(�x)Z ).Let I be any interpretation into A�, we then have I(u) = (�n)P j(�n)Q, forsome pro
esses P and Q and name n. Sin
e name n is not free in the pro-
ess (�n)Q (in the usual �-
al
ulus sense), by the s
ope extrusion axiom ofstru
tural 
ongruen
e we have (�n)P j(�n)Q � (�n)(P j(�n)Q) = I(v). Thisshows the soundness of the (Sp Res Par) axiom with respe
t to our intendedinterpretation.Rules in (Transposition) and (Apartness) express the a
tion of transpositionson indexes and name terms. The notation �
 is used to represent the ap-pli
ation of the transposition � to some (index or name term) 
, and �
 torepresent the appli
ation of an arbitrary sequen
e of transpositions (that is,a permutation) to the element 
. For example, (Swap Erase) expresses thattransposition of names whi
h are not free in a pro
ess a
t as the identity:in fa
t, if u :=S (�n)t holds then n denotes a name whi
h is not free in thepro
ess denoted by the name term u. We write S ` n#m to denote that

n#S m, and likewise for the other kinds of 
onstraints. We have the following14



basi
 propertiesLemma 3.10 For all 
onstraint theories S and S 0, for all 
onstraints 
 and
0, for all �-substitutions �, we have(1) S ` 
 implies S [ S 0 ` 
.(2) If S ` 
 and S; 
 ` 
0 then S ` 
0.(3) If S ` 
 then �(S) ` �(
).In the remainder of this se
tion, we present some basi
 
on
epts related tothe semanti
s of 
onstraint theories. An interpretation for a 
onstraint theoryassigns an appropriate denotation to all propositional, pro
ess and name vari-ables o

urring on it. As in Part I, we are interested on a version of the spatiallogi
 for the asyn
hronous �-
al
ulus (we use the standard notations � and!for asyn
hronous �-
al
ulus stru
tural 
ongruen
e and redu
tion). Therefore,interpretations that 
on
ern us here map pro
ess variables into A� pro
esses,name variables into A� names, and propositional variables into property sets.For 
onvenien
e, we present A� as a �-algebraA� = h�;P;P; 0; j;�; ($)�; ($)P ; ($)Piwhere � is the set of pure names, P is the set of pro
esses, and P is the
olle
tion of all Psets (De�nition 2.1). We now de�neDe�nition 3.11 (A�-interpretation) A A�-interpretation J is an inter-pretation of the term �-algebra into A�.As noti
ed above, we 
an then see that an A�-interpretation J 
ontains avaluation, so that it also makes sense to write JAKJ for the denotation of theformula A under the valuation determined by J . Also, for a name term n, we
an verify that J (n) = JnKJ .De�nition 3.12 (Satisfa
tion and Validity) The relation of satisfa
tionbetween an A�-interpretation J and 
onstraints is de�ned thus:1. J sat m
:= n , JmKJ = JnKJ2. J sat u := v , J (u) � J (v)3. J sat u! v , J (u)! J (v) 4. J sat m#n , JmKJ 6= JnKJ5. J sat F := G , JF KJ = JGKJ6. J sat n#F , JnKJ 62 supp(JF KJ )J satis�es the 
onstraint theory S if J satis�es all 
onstraints in S. A 
on-straint S ` 
 is valid if every interpretation that satis�es S also satis�es 
.The following lemma establishes the soundness of the 
losure of 
onstrainttheories.Lemma 3.13 (Soundness) Let S be a 
onstraint theory and J a A�-inter-pretation that satis�es S. For all name terms m and n, for all indexes u and15



t, and for all propositional terms F and G, we have:1. If m
:=S n then JmKJ = JnKJ2. If u :=S t then J (u) � J (t)3. If u!S t then J (u)! J (t) 4. If m#S n then JmKJ 6= JnKJ5. If F :=S G then J (F ) = J (G)6. If m#S F then JmKJ 62 supp(JF KJ )Proof. By indu
tion on the derivations of 
 :=S 
0, n#S m, m#S F , and u!Sv using well-known properties of stru
tural 
ongruen
e, name transpositionand redu
tion of the asyn
hronous �-
al
ulus.3.3 SequentsHaving introdu
ed indexes and 
onstraint theories, we 
an now de�ne thesequents of our logi
. First, a 
ontext is a �nite multiset of indexed formulasof the form u : A where u is an index (De�nition 3.2) and A is a formula. Weuse �;� to denote 
ontexts. ThenDe�nition 3.14 (Sequent) A sequent is a judgment of the form hSi� � �where S is a 
onstraint theory, and � and � are 
ontexts.As usual, the right 
ontext � is interpreted as the disjun
tion of its formu-las, the left 
ontext � is interpreted as the 
onjun
tion of the formulas in it.De�ning 
ontexts as multisets allows for the impli
it use of ex
hange (butnot 
ontra
tion!) in proofs. We write � �� �0 if �0 is obtained from � by�-
onverting some formulas in it.De�nition 3.15 (Variables in sequents) The set of free (name, pro
ess,and propositional) variables of a 
ontext � is given bylfv(�)M=[fafv(u) [ lfv(A) j u : A 2 �gThe set of free (name, pro
ess, and propositional) variables in a sequent hSi��� is given by fv(hSi� � �)M=afv(S) [ fv(�) [ fv(�)N.B.: name variables x o

ur both in 
onstraints and in formulas A; pro
essvariables X o

ur only in indexes; propositional variables X also may o

ur informulas and 
onstraints. Given a A�-interpretation J and a 
ontext �, wesay that J satis�es all of � if J (u) 2 JAKJ for all u : A 2 �. Likewise, we saythat J satis�es some of � if J (u) 2 JAKJ for some u : A 2 �. Hen
e we haveDe�nition 3.16 (Valid Sequent) A sequent hSi� � � is valid if for allinterpretations J su
h that J satis�es S, and J satis�es all of �, then Jsatis�es some of �. 16



A �S A0 if A �� A0(n$m)0 �S 0(n$m)F �S F(n$m)(A ^B) �S (n$m)A ^ (n$m)B(n$m)(A) B) �S (n$m)A) (n$m)B(n$m)(AjB) �S (n$m)Aj(n$m)B(n$m)(A . B) �S (n$m)A . (n$m)B(n$m)�A �S �(n$m)A(n$m)(Ix:A) �S Ix:(n$m)(Afx (n$m)xg) if x 62 fv(m) [ fv(n)(n$m)(8x:A) �S 8x:(n$m)(Afx (n$m)xg) if x 62 fv(m) [ fv(n)(n$m)(8X:A) �S 8X:(n$m)AfX (n$m)Xg(n$m)(prA) �S ((n$m)p)r (n$m)A(n$m)(A� p) �S (n$m)A�((n$m)p)(n$m)(phqi) �S ((n$m)p)h(n$m)qi
nrA �S mrA if n

:=S mA�n �S A�m if n
:=S m

nhmi �S phqi if m
:=S p and n

:=S qF �S G if F :=S GFig. 6. Formula Equivalen
e.For example, if A and B are 
losed formulas, the sequent hi X : A � X : B isvalid if and only if every pro
ess that satis�es the formula A also satis�es theformula B.3.4 AssertionsAn assertion A �S B states that, under any interpretation that satis�es all
onstraints in S, the formulas A and B denote the same property.De�nition 3.17 (Equational equivalen
e of formulas) Equational equiv-alen
e of formulas, written �S, is the least 
ongruen
e relation on formulasindu
tively de�ned in Figure 6.We 
all a formula normalized if all o

urren
es of transpositions o

ur at theterm level (so it 
ontains no subformula of the form (n$m)A). In general,given a 
onstraint theory S, any formula A 
an be 
onverted into a semanti-17




ally equivalent but normalized formula A0, using the equations in Figure 6 asleft-to-right rewrite rules. We then de�neDe�nition 3.18 (Normalized) We assert A +S B whenever A �S B andB is normalized.Note that if A +S B and A +S B0, we must have B +S B0. We also use thenotation � +S �0 to denote that the sequent 
ontext �0 results from normalizingthe sequent 
ontext � under the 
onstraints S. Thus, we also 
all a sequentor sequent 
ontext normalized whenever all formulas in it are normalized.MoreoverLemma 3.19 For all formulas A;B and 
onstraint theory S we have(1) For every �-substitution �, if A �S B then �(A) ��(S) �(B).(2) If A �S B then there is A0 su
h that A +S A0 and B +S A0.(3) If A �S B and A +S A0 for formula some A0, then also B +S A0.Proof. (1{3) Indu
tion on the derivation of A �S B.An assertion n#S A states that, under any interpretation that satis�es all
onstraints in S, the name denoted by the name term n is fresh in theproperty denoted by the formula A. More pre
isely, given a formula A withlft(A) = fm1; : : : ;mkg, and a 
onstraint theory S, we write n#S A as anabbreviation for the set (understood as the 
onjun
tion) 
ontaining the 
on-straints n#S m1; : : : ;n#S mk. N.B.: ea
h mi is either a name term or a propo-sitional variable. The following fa
ts are important:Lemma 3.20 For all normalized formulas A and name terms p; q,(1) Let p#S A and q#S A. Then (p$q)A +S A.(2) Let p#S Ix:A and q#S Ix:A. Then (p$q)Afx pg +S Afx qg.Proof. Follows from Lemma 8.2 in appendix. .We 
an verify that the relations �S (between formulas), and #S (betweenname terms and formulas) de�ned above are sound with respe
t to their in-tended interpretations.Lemma 3.21 (Soundness) Let J be a A�-interpretation. For all formulasA, B and name terms n,(1) If J satis�es S and A �S B then JAKJ = JBKJ .(2) If J satis�es S and n#S A then JnKJ 62 fnJ (A).(3) If J satis�es S and n#S A then JnKJ 62 supp(JAKJ ).Proof. (1) Indu
tion on the derivation of A �S B. (2) By Lemma 3.13. (3) By(2) and Theorem 2.3(1).
18



[A is an atomi
 formula ℄hSi�; u : A � u : A;� (Id) hSi� � u : A;� hSi�; u : A � �hSi� � � (Cut)hSi�; u : A; u : A � �hSi�; u : A � � (CL) hSi� � u : A; u : A;�hSi� � u : A;� (CR)(n$m)A �S A0hSi�; u0 : A0 � � (m$n)u :=S u0hSi�; u : A � � (TL) (n$m)A �S A0hSi� � u0 : A0;� (m$n)u :=S u0hSi� � u : A;� (TR)hSi�; u : F � � (FL) hSi� � �hSi� � u : F;� (FR)hSi�; u : A; u : B � �hSi�; u : A ^B � � (^L) hSi� � u : A;�hSi� � u : B;�hSi� � u : A ^B;� (^R)hSi� � u : A;� hSi�; u : B � �hSi�; u : A) B � � ()L) hSi�; u : A � u : B;�hSi� � u : A) B;� ()R)Fig. 7. Stru
tural and Propositional Rules.3.5 Inferen
e RulesWe now present the set of inferen
e rules of our base proof system S. Infer-en
e rules may have for premises not just sequents but also assertions overthe 
losure of the 
onstraint theory S that appears in the 
on
lusion. Su
hassertions are of the form u :=S v (mostly in the rules for spatial 
onne
tives),A �S B (in (TL) and (TR) rules), u!S v (in the temporal rules) or n#S A(in the freshness rules).The rules in the identity, stru
tural and propositional group (see Figures 7)follow the standard format. We use the simplest possible form for the (Id)axiom, where the formula A is required to be atomi
. Re
all that in generala formula is 
alled atomi
 if it is not built from a logi
al 
onne
tive at thetop level, in our 
ase, if it is either a propositional variable X or a messagenhmi. This is without loss of generality, sin
e the general form of (Id) wherethe identi�ed formula 
an be an arbitrary one is admissible (Lemma 5.5). Wein
lude expli
it 
ontra
tion rules (CL) and (CR); weakening is admissible, andex
hange may be dealt with impli
itly, sin
e sequent 
ontexts are multisets.The transposition rules (TL) and (TR) 
apture the property of invarian
eof the semanti
s under transposition of names (Theorem 2.3). They also in-
orporate the theory of equality of indexes and names terms de�ned by the19



hS; t := 0i� � �hSi�; t : 0 � � (0L) u :=S 0hSi� � u : 0;� (0R)[X and Y not free in the 
on
lusion℄hS; u := X jY i�; X : A; Y : B � �hSi�; u : AjB � � (jL) hSi� � v : A;�hSi� � t : B;� u :=S vjthSi� � u : AjB;� (jR)
hSi� � t : A;� hSi�; tju : B � �hSi�; u : A . B � � (.L) [X not free in the 
on
lusion℄hSi�; X : A � v : B;� v :=S X juhSi� � u : A . B;� (.R)[X not free in the 
on
lusion℄hS; u := (�n)X i�; X : A � �hSi�; u : nrA � � (rL) hSi� � u : A;� t :=S (�n)uhSi� � t : nrA;� (rR)hSi�; t : A � � t :=S (�n)uhSi�; u : A�n � � (�L) hSi� � u : A;� u :=S (�n)thSi� � t : A�n;� (�R)Fig. 8. Spatial Rules.[X not free in the 
on
lusion℄hS; u! X i�; X : A � �hSi�; u : �A � � (�L) hSi� � v : A;� u!S vhSi� � u : �A;� (�R)Fig. 9. Temporal Rules.hS; x#N; u := (�x)X i�� �hSi� � � (I)u :=S (�n)v

n#S Ix:AhSi�; u : Afx ng � �hSi�; u : Ix:A � � (IL) u :=S (�n)v
n#S Ix:AhSi�� u : Afx ng;�hSi� � u : Ix:A;� (IR)Fig. 10. Freshness Rules
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onstraint 
losure (De�nition 3.8) into the proof system, in parti
ular ax-iomatizing the prin
iple of substitution of equals for equals of name termsin formulas. Note that, in these rules, indexes are identi�ed up to :=S, whileformulas are identi�ed up to �S. As we shall dis
uss in Se
tion 5.2, expli
ittranspositions and the transpositions rule also play a 
ru
ial role in obtaining
ut-elimination for the freshness quanti�er.hSi�; u : Afx ng � �hSi�; u : 8x:A � � (8L) [y not free in the 
on
lusion℄hSi� � u : Afx yg;�hSi� � u : 8x:A;� (8R)
hSi�; u : AfX Bg � �hSi�; u : 8X:A � � (82L) [Y not free in the 
on
lusion℄hSi� � u : AfX Y g;�hSi� � u : 8X:A;� (82R)Fig. 11. Quanti�er Rules.hS; u := 0i� � � ujv :=S 0hSi� � � (Sj0) hS; u := 0i� � � (�n)u :=S 0hSi� � � (S�0)[X and Y not free in the 
on
lusion℄hS; u := X jY ; (�n)X := t; (�n)Y := vi� � � (�n)u :=S tjvhSi� � � (S�j)[X ,X 0,Y and Y 0 not free in the 
on
lusion℄hS; u := X jX 0; w := Y jY 0; t := X jY ; v := X 0jY 0i� � � ujw :=S tjvhSi� � � (Sjj)[X not free in the 
on
lusion℄hS; u := (n$m)vi� � �hS; u := (�m)X ; v := (�n)X i� � � (�n)u :=S (�m)vhSi� � � (S��)0!S uhSi� � � (S0!) [X not free in the 
on
lusion℄hS; u! X ; v := (�n)X i� � � (�n)u!S vhSi� � � (S� !)Fig. 12. World Rules.In the rules for propositional 
onne
tives, indexes keep tra
k of the pro
esses21



for whi
h the formulas are asserted to hold, but do not interfere in any waywith the 
onstraint part of sequents. This is not the 
ase in rules for the spatial
onne
tives (Figure 8), that and make essential use of the 
onstraint theoriesin sequents. Note that the left rules, when read bottom-up, introdu
e spatial
onstraints into the 
onstraint theories, and the respe
tive right rules, whenread top-down, 
he
k 
orresponding 
onstraints. While spatial rules rely onspatial 
onstraints, temporal rules (Figure 9) rely on redu
tion 
onstraints.The rules for �rst and se
ond order quanti�ers have the expe
ted form (Fig-ure 11). We then introdu
e the rules for freshness (Figure 10). Rule (I) as-serts, when read bottom-up, that there is always a name (denoted by) x thatis fresh with respe
t to the free names of (the pro
ess denoted by) the indexu, and that is also fresh with respe
t to a set of names (denoted by the nameand propositional variables in) N . Hen
e, rule (I) 
orresponds to the (Fresh)axiom of Pitts' Nominal Logi
 [18℄.The rules (IL/R) for the fresh quanti�er do not show the symmetry onemight expe
t of a left / right rule pair. This fa
t relates to the existential /universal ambivalen
e of freshness quanti�
ation (the Gabbay-Pitts property):note that (IL) follows the pattern of (8L), while (IR) follows the pattern of(9R). Then, (I) embodies the introdu
tion of fresh witnesses usually presentin both (8R) and (9L). Both (IL) and (IR) in
lude a premise of the form
n#S Ix:A, asserting that the name term n must denote a name distin
t fromall free names in the support of the property denoted by formula A. Moreover,in the rules for Ix:A, in addition to the freshness 
ondition n#S Ix:A, theassumption u :=S (�n)v ensures that n denotes a name that does not o

urfree in the pro
ess denoted by u, 
f. the semanti
s of Ix:A.Finally, world rules (Figure 12) axiomatize 
ertain deep (extra-logi
al) prop-erties of the worlds. Moreover, the properties 
aptured by the proposed setof world rules (inversion prin
iples for stru
tural 
ongruen
e and for pro
essredu
tion) are expe
ted to hold in any natural variation of the �-
al
ulus.It is important to note that none of the studied proof-theoreti
 properties ofour logi
 (e.g., 
ut-elimination) depend on the 
hosen set of world rules. Thismeans that the proof system is 
ompletely open to the addition of furtherworld rules, provided their soundness is granted, that they do not 
hange log-i
al 
ontexts of sequents (� and �), and that they just 
he
k or eliminate
onstraints from the 
onstraint part of sequents.We assert ` hSi� � � to state that the sequent hSi� � � has a derivation.We now state soundness of our system with respe
t to the intended model.Theorem 3.22 (Soundness) All sequents derivable in S are valid in A�.Proof. See appendix.
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:A M= A) F (Negation)T M= :F (True)A _B M= :A) B (Disjun
tion)AkB M= :(:Aj:B) (De
omposition)

n
M= :nrT (Free name)2A M= :�:A (All next)� A M= A . F (In
onsisten
y)!A M= � :A (Validity)A Z) B M= !(A) B) (Entailment)9x:A M= :8x::A (First-order existential quanti�
ation)9X:A M= :8X::A (Se
ond-order existential quanti�
ation)Hx:A M= Ix:xrA (Hidden name quanti�
ation)Fig. 13. Derived Conne
tives.3.6 Derived Conne
tives and Inferen
e RulesBefore 
losing the se
tion, we introdu
e some useful derived 
onne
tives (seeFigure 13). These in
lude the usual operations of the 
lassi
al predi
ate 
al-
ulus, namely :A (Negation), 9x:A (Existential quanti�
ation), A _ B (Dis-jun
tion) and T (True), with the expe
ted meaning. De
omposition AkB isthe DeMorgan dual of 
omposition AjB. For instan
e, a pro
ess satis�es 0k0if it is single-threaded (or void). We also have the standard temporal modality2, the dual of �. The free name predi
ate 

n holds of any pro
ess with somefree o

urren
e of the name (denoted by the name term) n. In
onsisten
y � Aexpresses internally to the logi
 that A is false of every pro
ess and validity !Athat A holds of every pro
ess [10℄. Thus, entailment A Z) B internalizes the
onsequen
e relation indu
ed by the logi
. The hidden name quanti�er is de-�ned as in [2℄. For these 
onne
tives the inferen
e rules presented in Figures 14and 15 
an easily be shown to be admissible.4 Indu
tive and Coindu
tive De�nitionsIn this se
tion, we present our treatment of re
ursive formulas. First, as shownin Se
tion 3.6 we 
an 
ombine the spatial operator . with 
lassi
al negation toobtain an operator !AM=(A) F) . F that has the meaning that A is valid (issatis�ed by any pro
ess). !A is an example of a 
lassi
al formula [10℄: the truthvalue of 
lassi
al formulas does not depend on the parti
ular world (pro
ess)23



hSi� � �hSi�; u : T � � (TL) hSi� � u : T;� (TR)hSi�; u : A � �hSi�; u : B � �hSi�; u : A _B � � (_L) hSi� � u : A; u : B;�hSi� � u : A _B;� (_R)hSi� � u : A;�hSi�; u : :A � � (:L) hSi�; u : A � �hSi� � u : :A;� (:R)hSi�; v : A � �hSi�; t : B � � u :=S vjthSi�; u : AkB � � (kL) [X and Y not free in the 
on
lusion℄hS; u := X jY i� � X : A; Y : B;�hSi� � u : AkB;� (kR)
u :=S (�n)vhSi�; u : 

n � � ( 

L) [X not free in the 
on
lusion℄hS; u = (�n)X i� � �hSi� � u : 

n;� ( 

R)

hSi�; v : A � � u!S vhSi�; u : 2A � � (2L) [X not free in the 
on
lusion℄hS; u! X i� � X : A;�hSi� � u : 2A;� (2R)Fig. 14. Inferen
e Rules for derived 
onne
tives.at whi
h they are evaluated. Then, the formulaA Z) B M= !(A) B)means that the denotation of formula A is 
ontained in the denotation offormula B. Now, given a formula A with a free propositional variable X,we say that A is monotoni
 in X if the mapping that assigns JAKv[X 	℄ toevery property 	 is monotoni
. Writing A as AfXg and AfX Bg as AfBg,through se
ond-order quanti�
ation we 
an express inside the logi
 that A ismonotoni
 in X as follows:AfX+g M= 0 :!8X:8Y:(X Z) Y )) (AfXg Z) AfY g)We may 
he
k that AfX+g is valid if and only if A is monotoni
 in X (notethat AfX+g is an indexed formula, where the index is 0).We then de�ne leastand greatest �xpoint operators in a style similar to F -algebrai
 en
odings.24



hSi�; v : A � �hSi�; u :!A � � (!L) [X not free in the 
on
lusion℄hSi� � X : A;�hSi� � u :!A;� (!R)
hSi� � v : A;� hSi�; v : B � �hSi�; u : A Z) B � � (Z)L) [X not free in the 
on
lusion℄hSi�; X : A � X : B;�hSi� � u : A Z) B;� (Z)R)[x not free in the 
on
lusion℄hSi�; u : A � �hSi�; u : 9x:A � � (9L) hSi� � u : Afx ng;�hSi� � u : 9x:A;� (9R)[X not free in the 
on
lusion℄hSi�; u : A � �hSi�; u : 9X:A � � (92L) hSi� � u : AfX Bg;�hSi� � u : 9X:A;� (92R)[X not free in the 
on
lusion℄

n#S Hx:AhS; u := (�n)X i�; X : Afx ng � �hSi�; u : Hx:A � � (HL) n#S Hx:A u :=S (�n)vhSi� � v : Afx ng;�hSi� � u : Hx:A;� (HR)Fig. 15. Inferen
e Rules for derived 
onne
tives.�Y:AfY g M= 8Y:(AfY g Z) Y )) Y �Y:AfY g M= :�X::AfXgThese de�nitions turn out to enjoy the expe
ted properties of re
ursive formu-las, in the form of the derivable left and right rules in Figure 16. For example,the derivable rule (�R) 
orresponds to a 
oindu
tion prin
iple. The foldingand unfolding prin
iples for �X:A and �X:A 
an also be derived, by makingan essential use of monotoni
ity assumptions. We show in detail the 
ase forfolding the least �xpoint operator, using the abbreviation F M=�X:AfXg tomake the proof more readable.hSi�; AfX+g � u : Af�X:AfXgg Z) �X:AfXg;� (Fold)5: hSi�; AfX+g; X : AfFg; X : AfXg Z) X; X : AfFg Z) AfXg � X : X;� (by Id)4: hSi�; AfX+g; X : AfFg; X : AfXg Z) X; X : F Z) X � X : X;� (by 5, (MonL))3: hSi�; AfX+g; X : AfFg; X : AfXg Z) X � X : X;� (by 4, (�FixL))2: hSi�; AfX+g; X : AfFg � X : F;� (by 3, (82R), (!R), ()R)1: hSi�; AfX+g � u : AfFg Z) F;� (by 2, (!R), ()R))25



hSi�; AfX+g; u : AfBg Z) AfCg � �hSi�; AfX+g; u : B Z) C � � (MonL)hSi�; AfX+g � u : B Z) C;�hSi�; AfX+g � u : AfBg Z) AfCg;� (MonR)[X is not free in the 
on
lusion℄hSi�; u : X;u : X Z) AfXg � �hSi�; u : �X:A � � (�L)[X is not free in the 
on
lusion℄hSi�; X : B � X : AfX Bg;� hSi� � u : B;�hSi� � u : �X:A;� (�R)[X is not free in the 
on
lusion℄hSi�; u : AfXg Z) X � u : X;�hSi� � u : �X:A;� (�R)[X is not free in the 
on
lusion℄hSi�; X : AfBg � X : B;� hSi�; u : B � �hSi�; u : �X:A � � (�L)hSi�; u : �X:AfXg Z) B � �hSi�; u : AfBg Z) B � � (�FixL) hSi� � u : AfBg Z) B;�hSi� � u : �X:AfXg Z) B;� (�FixR)Fig. 16. Derived rules for the �xpoint operators.In se
tion 6.6 we give further examples illustrating the use of re
ursion.5 Basi
 Proof TheoryIn this se
tion we develop some proof-theory for our logi
, stating severaladmissible proof prin
iples and a 
ut elimination result for the �rst-orderfragment.5.1 Admissible RulesMost of the presented proof prin
iples are size-preserving, and instrumental tothe proof of 
ut elimination. We introdu
e a measure for the size of a deriva-tion, in whi
h 
ertain o

urren
es of the (TL/TR) rules are not weighted. Wewill show below that any derivation 
an be transformed into a derivation for26



the same sequent where all o

urren
es of the (TL/TR) rules are simple.De�nition 5.1 (Simple o

urren
e) In a derivation, an o

urren
e of a(TL/TR) inferen
e rule is simple if it applies either to an instan
e of (Id), orto another simple o

urren
e of a (TL/TR) inferen
e rule.De�nition 5.2 (Size of a derivation) The size of a derivation is the num-ber of rule o

urren
es it 
ontains, other than simple o

urren
es of (TL/TR)inferen
e rules.We then assert `n hSi�� � to state that the given sequent has a derivationof size not ex
eeding n. We have the following useful admissible rulesLemma 5.3 (Basi
 Admissible Rules) The following size-preserving proofprin
iples are admissible:[ ';'0 2 V [ X [ Z, '0 not free in premise ℄`n hSi� � �`n hSf' '0gi�f' '0g � �f' '0g (Ren) [ � �� �0 and � �� �0 ℄`n hSi� � �`n hSi�0 � �0 (�)`n hSi� � �`n hSfx mgi�fx mg � �fx mg (InN ) `n hS; 
i� � � S ` 
`n hSi� � � (CS)`n hSi� � �`n hSfX ugi�fX ug � �fX ug (InI) `n hSi� � �`n hS; S0i�;�0 � �;�0 (W)Proof. See appendix.Lemma 5.4 (Repla
ement and Instantiation) The inferen
e rules pre-sented below are admissible[ X not free in S ℄hSi X : A � X : B hSi X : B � X : AhSi Y : C[A℄ � Y : C[B℄ (Rep) [ X not free in the 
on
lusion ℄hSi� � �hSi�fX Ag � �fX Ag (In2)Proof. (Rep) By indu
tion on the stru
ture of the 
ontext C[�℄. (In2) Byindu
tion on the derivation.Our primitive (Id) axiom is restri
ted to atomi
 formulas, however we havethe following standard property for unrestri
ted formulas.Lemma 5.5 Every sequent of the form hSi�; u : A � u : A;�, where A innot atomi
, has a 
ut- and 
ontra
tion-free derivation.Proof. See appendix. 27



We now introdu
e the following useful variants of the (TL) and (TR) rules.(n$m)A +S A0hSi�; u0 : A0 � � (m$n)u :=S u0hSi�; u : A � � (SL) (n$m)A +S A0hSi� � u0 : A0;� (m$n)u :=S u0hSi� � u : A;� (SR)
De�nition 5.6 S1 is the proof system obtained from the base proof system Sby repla
ing rules (TL) and (TR) with the rules (SL) and (SR).It is easy to see that if a sequent is derivable in S1 then it is also derivable inthe base system sin
e A �S B whenever A +S B. In fa
t, every S1 derivation
an be seen as a derivation in the base system just by interpreting (SR) and(SL) as (TR) and (TL) respe
tively. Conversely, if a sequent is derivable inthe base system, it is also derivable in S1 sin
e any instan
e of (TL) or (TR)
an be emulated using Cut, (SL) and (SR). Like with S derivations we 
allsimple to any S1 derivation in whi
h all instan
es of (SL) and (SR) inferen
erules are simple (
f., De�nition 5.1). Hen
e, a

ording to De�nition 5.2, in asimple S1 derivation no o

urren
e of the (SL) and (SR) rule is weighted.Remark 5.7 The main di�eren
e between the system S and the system S1,is that all formulas o

urring in a 
ut-free S1 proof of a normalized sequentare normalized (De�nition 3.18). Moreover, as the following Lemma shows,every S or S1 proof of a normalized sequent 
an be transformed into a S1proof of the same sequent in whi
h all formulas are normalized.Lemma 5.8 (Simpli�
ation) Assume (n$m)u :=S u0 and (n$m)A +SA0, � +S �0 and � +S �0. Then the following size-preserving proof prin
iplesare admissible:(1) If `n hSi�; u : A � � in S then `n hSi�0; u0 : A0 � �0 in S1.(2) If `n hSi�� u : A;� in S then `n hSi�0 � u0 : A0;�0 in S1.The resulting derivations in S1 are simple and normalized. Moreover, if theoriginal derivations in S are 
ut-free the resulting ones in S1 are also 
ut-free.Proof. See appendix.A useful spe
ial 
ase of Lemma 5.8 is the following fa
t.Lemma 5.9 Assume � +S �0 and � +S �0. If `n hSi� � � in S then`n hSi�0 � �0 in S1.Proof. By Lemma 5.8(2): let u : A = 0 : F and note that if `n hSi�0 � 0 :F;�0 then `n hSi�0 � �0. 28



hSi� � v : A; u : AjB;�hSi� � t : B; u : AjB;� u :=S vjthSi� � u : AjB;� (jRK) hSi�; u : A . B � t : A;�hSi�; u : A . B; tju : B � �hSi�; u : A . B � � (.LK)u :=S (�n)thSi� � t : A; u : nrA;�hSi� � u : nrA;� (rRK)hSi� � t : A; u : �A;� u!S thSi� � u : �A;� (�RK) hSi�; u : 8x:A; u : Afx mg � �hSi�; u : 8x:A � � (8LK)u :=S (�n)v n#S Ix:AhSi� � u : Ix:A; u : Afx ng;�hSi� � u : Ix:A;� (IR) u :=S (�n)v n#S Ix:AhSi�; u : Ix:A; u : Afx ng � �hSi�; u : Ix:A � � (IL)Fig. 17. Rules of the 
ontra
tion-free system CF.5.2 Cut EliminationOur aim is now to prove the 
ut-elimination property for the �rst-order frag-ment of our logi
. First, we introdu
e an alternative proof system CF. Thesystem CF has no primitive 
ontra
tion rules, but admits an admissible size-preserving 
ontra
tion prin
iple that plays an important role in the base 
aseof the Cut Lemma 5.17 below. Then, we show that there are transformationsbetween derivations in CF, S1, and S, su
h that the 
ut-elimination propertyfor CF implies the 
ut-elimination property for S. From now on, we restri
tto the �rst-order fragment of our logi
.De�nition 5.10 CF is the proof system obtained from the system S1 by re-moving the 
ontra
tion rules (CL) and (CR), and repla
ing the rules (8L),(jR), (.L), (IL), (IR), (rR), and (�R) by the rules shown in Figure 17.The CF rules are identi
al to the 
orresponding ones in system S, ex
ept inthat they embed a 
ontra
tion step (
f. the system G3
 in [23℄), that is, theprin
ipal formula is 
opied in the premise. The repla
ed rules are pre
isely thenon-invertible ones. Note that in sequent 
al
ulus presentations of 
lassi
allogi
 (e.g., Gentzen's LK) (8L) is not invertible, and in 
lassi
al linear logi
(
R) is not invertible (
f., (jR)) and (�ÆL) is not invertible (
f. (.)).Note that any derivation in CF 
an be immediately transformed into a deriva-tion in the basi
 system, sin
e ea
h CF rule that does not belong to the systemS1 
an be easily simulated by the 
orresponding rule followed by 
ontra
tion.29



Lemma 5.11 If a sequent has a derivation in the system CF, it has a deriva-tion in the system S1. Moreover, if the original derivation is 
ut-free, so isthe resulting one.Moreover, sin
e the proof transformations given in Lemmas 5.3 and 5.8 are
ompletely stru
ture-preserving, we 
an also verify thatLemma 5.12 (Admissible Rules for the CF system) The proof prin
i-ples in Lemma 5.3 and Lemma 5.8 hold exa
tly as stated for the CF system.Lemma 5.13 (Inversion) The following size-preserving proof prin
iples areadmissible in the system CF, provided the sequents shown are normalized.(1) If `n hSi�; u : A ^B � � then `n hSi�; u : A; u : B � �.(2) If `n hSi�� u : A ^ B;� then`n hSi� � u : A;� and `n hSi� � u : B;�.(3) If `n hSi�� u : A) B;� then hSi�; u : A � u : B;�.(4) If `n hSi�; u : A) B � � then`n hSi�; u : B � � and `n hSi� � u : A;�.(5) If `n hSi�� u : 8x:A;� then`n hSi� � u : Afx yg;�, for any fresh y.(6) If `n hSi�� u : A . B;� then`n hSi�; X : A � X ju : B;�, for any fresh X .(7) If `n hSi�; u : AjB � � then`n hS; u := X jY i�; X : A; Y : B � �, for any fresh X ; Y .(8) If `n hSi�; u : nrA � � then`n hS; u := (�n)X i�; X : A;� �, for any fresh X .(9) If `n hSi�; u : 0 � � then `n hS; u := 0i�� �.The resulting derivations are normalized. Moreover, if the original derivationsare 
ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. See appendix.Lemma 5.14 (Contra
tion Elimination) The size-preserving proof prin-
iples given below are admissible in the system CF, provided the sequentsshown are normalized:`n hSi� � u : A; u : A;�`n hSi�; u : A � � (CR) `n hSi�; u : A; u : A � �`n hSi�; u : A � � (CL)The resulting derivations are normalized. Moreover, if the original derivationsare 
ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. See appendix.We 
an now state: 30



Proposition 5.15 If a normalized sequent is derivable in S1 then it is deriv-able in CF. The resulting derivation is normalized. Moreover, if the originalderivation is simple, so is the resulting one.Proof. By indu
tion on the stru
ture of the original derivation, we 
onstru
t aCF derivation by repla
ing every o

urren
e of (8L), (jR), (.L), (IL), (IR),(rR), and (�R) by the 
orrespondingCF rule, after adding the extra requiredformula in the premise using (W), and removing every o

urren
e of (CL) and(CR) using Lemma 5.14.We are now in a position to show that the �rst-order fragment of the spatiallogi
 enjoys the 
ut elimination property. This result is reasonable eviden
ethat our addition of stru
tural and freshness 
onstraints to sequents and in-feren
e rules is rather 
anoni
al. For instan
e, 
uts on spatial formulas areeliminated quite uniformly, by mat
hing fresh pro
ess variables (on one side)against the given witnesses (on the other), and then eliminating the remain-ing redundant stru
tural 
onstraints. The 
ut elimination 
ase for freshnessquanti�
ations deserves a more detailed dis
ussion. Consider the following 
uthSi� � u : Afx ng;�hSi� � u : Ix:A;� hSi�; u : Afx mg � u : �hSi�; u : Ix:A � �hSi� � �To eliminate this we need to 
ut u : Afx ng against u : Afx mg, while pre-serving the sequent 
ontexts �;� untou
hed. In general m and n are di�erentname terms denoting distin
t names (we 
ould even have m#S n provably).In fa
t, soundness of this 
ut follows from the fa
t that a fresh name is (inthe sense of equivarian
e in Nominal Logi
) indistinguishable from any otherfresh name. In proof-theoreti
 terms, the equivarian
e property has as 
on-sequen
e that, in the apartness 
onditions made expli
it by the premises ofsu
h a 
ut, we 
an a
tually transform (using Lemma 5.8) the derivation ofhSi� � u : Afx mg;� into a derivation of hSi� � u : Afx ng;�. Forthis transformation to go through the use of formal transpositions seems tobe essential both in the �-algebra and in the syntax of formulas and terms.De�nition 5.16 (Single-
ut derivation) A single-
ut derivation is a deriva-tion with a single instan
e of the (Cut) rule, o

urring at its root.Lemma 5.17 (Cut Lemma) If a normalized sequent has a single-
ut simpleand normalized CF derivation then it has a simple and normalizedCF 
ut-freederivation.Proof. The root of the derivation of the given sequent has the form�1(n)hSi� � u : A;� �2(m)hSi�; u : A � � (Cut)hSi� � �31



where �1(n) and �2(m) are 
ut-free simple derivations for the sequents hSi� �u : A;� and hSi�; u : A � �, of sizes n and m respe
tively. We use thenotation �(n) to assert that � is a derivation of size n of the sequent inthe 
on
lusion of the rule. The proof pro
eeds by indu
tion on the measure(jAj; n+m), where jAj is the stru
tural 
omplexity of the 
ut-formula A, n+mis the sum of the sizes n and m of the derivations that o

urs as premises ofthe 
ut, and the pairs (jAj; m+ n) are ordered lexi
ographi
ally. We split thevarious possible forms of su
h premises as follows: (1) one of the premises isan instan
e of (Id) or (SL), (2) one of the premises is an instan
e of a worldrule, (3) one of the premises is an instan
e of (I), (4) one of the premises isan instan
e of a logi
al rule that does not introdu
e the 
ut-formula, or (5)both premises are instan
es of logi
al rules, both introdu
ing the 
ut formula.(1) (Case (Cut) - (Id/SL)) Suppose (Id/SL) o

urs in the right premise ofthe 
ut. Sin
e the derivation is simple by assumption, it must have the form(1:A) below�1(n)hSi� � u : A;� hSi�� � �� (Id)���hSi�; u : A � �hSi� � � (1:A) �10(n)hSi� � v : C; v : C;�00 (1:B)where the dots stand for a sequen
e of k � 0 appli
ations of the (SL) or(SR) rules. Hen
e, �� has the form �0; t : B, and �� has the form t : B;�0.We must 
onsider two 
ases: either the o

urren
e t : B in �� results fromu : A below in hSi�; u : A � �, or it does not. In the �rst 
ase, there is asequen
e of transpositions � su
h that �u :=S t and �A +S B, and a sequen
eof transpositions � su
h that �v :=S t and �C +S B, for some v : C in �(so � has the form v : C;�00). Therefore we have that ��1�A +S C and��1�u :=S v. Hen
e, by Lemma 5.8(1), there is the derivation (1:B) above,and we 
on
lude by (CR) Lemma 5.14. In the se
ond 
ase, we 
an then builda 
ut-free simple proof of hSi� � � of size equal to one by removing thepremise u : A and its an
estors from every sequent above hSi�; u : A ` �.The 
ase in whi
h the instan
e of (Id/SL) o

urs as the left premise of the 
utis handled symmetri
ally, also by Lemma 5.8.(2) (Case Cut - (S�)) We have�1(n)
S; S0�� � u : A;� u1 :=S v1 (S�)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �32



We 
an now build the derivation�1(n)
S; S0��; u : A � � �20(m)
S; S0��; u : A � �
S; S0�� � � u1 :=S v1 (S�)hSi� � �where �02(m) is obtained from �2(m) by (W). By indu
tion hypothesis, thereis a 
ut-free derivation of hS; S 0i�� �, so we 
on
lude by (S�).(3) (Case Cut - (I) We handle the 
ase in whi
h the 
on
lusion of (I) isthe left premise of the 
ut, being the right 
ase handled symmetri
ally. Hen
e,we have �1(n)hS; t := (�x)X ; x#Ni� � u : A;� (I)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �We 
an now build the derivation�1(n)hS; t := (�x)X ; x#Ni� � u : A;� �20(m)hS; t := (�x)X ; x#Ni�; u : A � �hS; t := (�x)X ; x#Ni� � � (I)hSi� � �where �02(m) is obtained from �2(m) by (W). By indu
tion hypothesis, thereis a 
ut-free derivation of hS; t := (�x)X ; x#Ni�� �, so we 
on
lude by (I).(4) (Case 4.LR) We 
onsider here the 
ase in whi
h the left premise of the
ut rule is the 
on
lusion of a right logi
al rule that does not introdu
e the 
utformula. We 
onsider the general 
ase of a two-premise rule, but the argument
an be repli
ated for single premise rule like (8R), or ()R), whi
h adds anhypothesis (e.g., �1) to the left 
ontext. Hen
e we have,�1(n)hSi�;�1 � u : A;�1 �2(m)hSi�;�2 � u : A;�2 CS (�R)hSi� � u : A;� �3(k)hSi�; u : A � �hSi� � �where in general the instan
e of (�R) may also have some assertions CS aspremises. Now, by (W) we 
an build derivations�03(k)hSi�; u : A;�1 � �;�1 �003(k)hSi�; u : A;�2 � �;�233



hen
e we 
an 
onstru
t the derivations�1(n)hSi�;�1 � u : A;�;�1 �03(k)hSi�; u : A;�1 � �;�1hSi�;�1 � �;�1and �2(m)hSi�;�2 � u : A;�;�2 �003 (k)hSi�; u : A;�2 � �;�2hSi�;�2 � �;�2By indu
tion hypothesis, there are 
ut-free derivations for the hSi�;�1 ��;�1 and hSi�;�2 � �;�2. Hen
e, by (�R) we 
an build a 
ut-free deriva-tion of hSi�� �, sin
e all possibly required assertions CS still apply.(Case 4.LL) The left premise of the 
ut is the 
on
lusion of a left logi
al rulethat does not introdu
e the 
ut formula. Note that in our proof system allleft rules have at most one premise, although some require testing 
ertainassertions C (namely (IL)). Hen
e we have in general�1(n)
S; S0��0 � u : A;� CS (�L)hSi� � u : A;� �2(m)hSi�; u : A � �hSi� � �Using (W) on �1(n) and �2(m) we 
an build the derivation�01(n)
S; S0��;�0 � u : A;� �02(m)
S; S0��; u : A;�0 � �
S; S0��;�0 � �By indu
tion hypothesis, we obtain a 
ut-free derivation of hS; S 0i�;�0 � �.Sin
e CS;S0 holds, by (�L) we obtain a 
ut-free derivation of hSi� � �.(Case 4.RR) The right premise of the 
ut is the 
on
lusion of a right logi
alrule that does not introdu
e the 
ut formula. Like (Case 4.LL) above.(Case 4.RL) The right premise of the 
ut is the 
on
lusion of a left logi
al rulethat does not introdu
e the 
ut formula. Like (Case 4.LR) above.(5)We now 
onsider all 
ases where the premises of the 
ut are 
on
lusions of(left and right) logi
al rules, both introdu
ing the 
ut formula. Then the rulethat o

urs in the left (resp. left) premise is a right-rule (resp. left-rule). We
onsider the various possible rule pairs, there is one su
h pair for ea
h logi
al
onne
tive. We show in detail the most interesting 
ases.34



(Case of j) We have�1(n)hSi� � u0 : A; u : AjB;� �2(m)hSi� � u00 : B; u : AjB;�hSi� � u : AjB;� �3(k)
S0��; X : A; Y : B � �hSi�; u : AjB � �hSi� � �where u :=S u0ju00, and S 0 = S; u := X jY . By (InI) with fX u0g and fY  u00gon �3 we get �03(k) �03(k)hS; u := u0ju00i�; u0 : A; u00 : B � �(note that by the side 
ondition on (jL) X and Y do not o

ur in S;�;�).Sin
e u :=S u0ju00, by (CS) we get �003(k)�003(k)hSi�; u0 : A; u00 : B � �We now build hSi� � u0 : A; u : AjB;� hSi�; u : AjB � �hSi� � u0 : A;�and hSi� � u00 : B; u : AjB;� hSi�; u : AjB � �hSi� � u00 : B;�By indu
tion hypothesis, these 
uts 
an be eliminated. By (W) from the deriva-tion of hSi� � u0 : A;� above, we obtain a derivation of hSi�; u00 : B � u0 :A;�. Now we 
onstru
t���hSi� � u00 : B;� ���hSi�; u00 : B � u0 : A;� ���hSi�; u0 : A; u00 : B � �hSi�; u00 : B � �hSi� � �By indu
tion hypothesis, these two 
uts 
an be su

essively eliminated.(Case of .) Let�1(n)hSi�; X : A � v0 : B;�hSi� � u : A . B;� �2(m)hSi�; u : A . B � t : A;� �3(k)hSi�; u : A . B; tju : B � �hSi�; u : A . B � �hSi� � � 35



where v0 :=S X ju. By (InI) with fX tg on �1(n) and Lemma 5.8(1) we get�01(n)hSi�; t : A � tju : B;�sin
e by Lemma 3.10(1) v0fX tg :=S tju (note that by the side 
ondition on(.R) X does not o

ur in S;�;�). We 
an now build�0(n+ 1)hSi� � u : A . B; t : A;� �2(m)hSi�; u : A . B � t : A;�hSi� � t : A;�where �0(n + 1) is obtained from the left premise of the original 
ut by (W).In a similar way we 
onstru
t�00(n+ 1)hSi�; tju : B � u : A . B;� �3(k)hSi�; u : A . B; tju : B � �hSi�; tju : B � �By indu
tion hypothesis, these two 
uts 
an be eliminated. By (W) on the�rst subderivation above we get ���hSi� � t : A; tju : B;�We now build the following derivation���hSi�; tju : B � � ���hSi� � t : A; tju : B;� �01(n)hSi�; t : A � tju : B;�hSi� � tju : B;�hSi� � �To 
on
lude, we use the indu
tion hypothesis to eliminate the 
ut on B, andthen the 
ut on A, like in the 
ases for ^ and ) above.(Case of 8) We have�1(n)hSi� � u : Afx yg;�hSi� � u : 8x:A;� �2(m)hSi�; u : Afx pg; u : 8x:A � �hSi�; u : 8x:A � �hSi� � �where y does not o

ur free in u; S;�;�. By (InN ) with fx pg on �1(n)�01(n)hSi� � u : Afx pg;�36



Using (Cut) we 
an build�2(n+ 2)hSi�; u : Afx pg � u : 8x:A;� �2(m)hSi�; u : Afx pg; u : 8x:A � �hSi�; u : Afx pg � �where the left premise 
omes from the left premise of the original 
ut by(W). By indu
tion hypothesis, this 
ut 
an be eliminated. We now build thefollowing single-
ut derivationhSi� � u : Afx pg;� hSi�; u : Afx pg � �hSi� � �and 
on
lude by the indu
tion hypothesis.(Case of I) We have�1(n)hSi� � u : Afz pg; u : Iz:A;�hSi� � u : Iz:A;� �2(m)hSi�; u : Afz qg; u : Iz:A � �hSi�; u : Iz:A � �hSi� � �where p#S Iz:A and q#S Iz:A, and u :=S (�p)u0 and u :=S (�q)u00. We 
annow build the derivation�1(n)hSi� � u : Afz pg; u : Iz:A;� �0(m+ 1)hSi�; u : Iz:A � u : Afz pg;�hSi� � u : Afz pg;�where the right premise is obtained from the right premise of the initial 
utby (W). Symmetri
ally, we 
an build the derivation�00(n+ 1)hSi�; u : Afz qg � u : Iz:A;� �2(m)hSi�; u : Afz qg; u : Iz:A � �hSi�; u : Afz qg � �where the left premise is obtained from the left premise of the initial 
ut by(W). These two 
uts 
an be eliminated by the indu
tion hypothesis. Sin
e(p$ q)Afz pg +S Afz qg by Lemma 3.20 and (p$q)u :=S u by (SwapErase), by Lemma 5.8 there is a derivation of� � u : Afz qg;�Then, we build the single-
ut derivationhSi� � u : Afz qg;� hSi�; u : Afz qg � �hSi� � �37



and 
on
lude by the indu
tion hypothesis.Theorem 5.18 (Cut Elimination) If a sequent has a �rst-order derivationin S then it has a derivation in S without any instan
e of the (Cut) rule.Proof. Assume that a sequent hSi� � � has a �rst-order derivation � inthe base system S. Without loss of generality, we assume that the sequentis normalized. If the sequent has a derivation in S, by Lemma 5.9 it has asimple and normalized S1 derivation �0. By Proposition 5.15, we 
on
ludethat hSi� � � has a simple and normalized derivation �00 in CF. Now, byindu
tion on the number of instan
es of (Cut) in �00, we 
an build a 
ut-freesimple and normalized derivation of the same sequent by iterating Lemma 5.17for ea
h minimal single-
ut subderivation of the derivation �00, thus ending upwith a 
ut-free CF derivation of the original sequent. By Lemma 5.11, we
on
lude that the sequent has a 
ut-free derivation in S1 and thus also in S.
6 ExamplesIn this Se
tion we go though a sequen
e of short examples to show how ourlogi
 is appli
able to reasoning about distributed 
on
urrent systems. We arene
essarily brief here, and show only very elementary examples, but mostinteresting logi
al operators are 
overed.6.1 Some Simple Spatial PropertiesWe show a simple derivation of the fa
t that (AjB) ^ 0 entails A, meaningthat if a pro
ess satis�es (AjB) ^ 0 then it satis�es A. The intuition is thatif a pro
ess P satis�es both (AjB) and 0, then P is (stru
turally equivalentto) the 0 pro
ess, whi
h is the same as 0j0; hen
e 0 satis�es A (and B). We
on
lude that P satis�es A. This derivation illustrates: a property 
ombiningspatial and propositional operators; the use of 
onstraint manipulation; andthe use of one of the world rules, namely, (Sj0) 
orresponding to the "zerolaw" of �-
al
ulus pro
esses: if P jQ � 0 then P � 0.5: hS; u := X jY ; u := 0; X := 0i�; X : A; Y : B � u : A;� (by (Id) sin
e u :=S X )4: hS; u := X jY ; u := 0i�; X : A; Y : B � u : A;� (by 5, (Sj0) sin
e X jY :=S 0)3: hS; u := X jY i�; X : A; Y : B; u : 0 � u : A;� (by 4, (0L))2: hSi�; u : (AjB); u : 0 � u : A;� (by 3, (jL))1: hSi�; u : (AjB) ^ 0 � u : A;� (by 2, (^L))38



Note that the proof is fairly simple, parti
ularly if 
ondu
ted bottom up. Most
onstraints are generated from the goal by using all the appli
able left rules,and the �nal 
onstraint X := 0 is generated by 
losing up the 
onstraint setunder dedu
tion, via (Sj0). Finally, (Id) involves a simple equivalen
e 
he
kin S. It is 
ommon for our derivations, when read bottom-up, to have thisme
hani
al 
avor.As a further interesting example, we prove a sequent for whi
h does not existsa 
ontra
tion free-proof in our system.11: hi X : A � X : 0; X : A; X : 0 (by (Id))10: hi � X : :A; X : 0; X : A; X : 0 (by 11 (:R))9: hi � X : :A; X : 0;0 : :A;0 : 0 (by (0R))8: hi � X : :A; X : 0; X : (A _ 0) (by 10 (_R))7: hi � X : :A; X : 0;0 : (:A _ 0) (by 9 (_R))6: hi � X : :A; X : 0; X : (A _ 0)j(:A _ 0) (by 7,8, (jR), sin
e u := uj0))5: hi � 0 : A;0 : 0; X : (A _ 0)j(:A _ 0) (by (0R))4: hi � 0 : A _ 0; X : (A _ 0)j(:A _ 0) (by 5, (_R))3: hi � X : :A _ 0; X : (A _ 0)j(:A _ 0) (by 6, (_R))2: hi � X : (A _ 0)j(:A _ 0); X : (A _ 0)j(:A _ 0) (by 3,4, (jR), sin
e u := 0ju)1: hi � X : (A _ 0)j(:A _ 0) (by 2, (CR))Indeed, any 
ut-free proof of hi � X : (A _ 0)j(:A _ 0) must end eitherby an appli
ation of 
ontra
tion or by an appli
ation of (jR). So, in absen
eof 
ontra
tion, the only possible premises are either hi � X : (A _ 0) andhi � 0 : (:A _ 0), or hi � 0 : (A _ 0) and hi � X : (:A _ 0). In either 
ase, bysoundness we 
an verify that neither hi � X : (:A _ 0) nor hi � X : (A _ 0)
an be derivable in general.
6.2 FreshnessWe show a derivation of the fa
t that :Ix:A entails Ix::A. This (and its
onverse) is a well-known property of Ix:A [14℄; the purpose here is to showthe use of the rules for freshness in a simple 
ase.39



6: hS; y#Ix:A; u := (�y)X i�; u : Afx yg � u : Afx yg;�(by (Id) 
hoose y; X fresh)5: hS; y#Ix:A; u := (�y)X i� � u : Afx yg; u : :Afx yg;� (by 6, (: R))4: hS; y#Ix:A; u := (�y)X i� � u : Ix:A; u : :Afx yg;� (by 5, (IR))3: hS; y#Ix:A; u := (�y)X i� � u : Ix:A; u : Ix::A;� (by 4, (IR))2: hS; y#Ix:A; u := (�y)X i�; u : :Ix:A � u : Ix::A;� (by 3, (: L))1: hSi�; u : :Ix:A � u : Ix::A;� (by 2, (I) y; X not in 
on
lusion)We start with Afx yg for a fresh y, instead of simply with A, so that we 
anapply (I) in the last step even when x o

urs free in �;�. It is usually the 
asethat an appli
ation of rules (I L) or (I R) is followed by an appli
ation of rule(I), to 
lean up the 
onstraints. Note, however, that having (I) de
oupledfrom (IL) and (IR) allow us to apply, in this 
ase, (IR) twi
e before applying(I).Along similar lines, we 
an derive interesting properties 
ombining Ix:A withspatial operators, for example the following one, whi
h is important for de-riving properties of the hiding quanti�er (it takes about eight steps in ea
hdire
tion, but with a rather more involved set of 
onstraints):hSi�; u : (Ix:A)j(Ix:B) �� u : Ix:(AjB);�This derivation uses the world rule (S�j), whi
h embeds a rather deep lemmaabout �-
al
ulus stru
tural 
ongruen
e; namely, that if (�n)P � QjR thenthere exist P 0; Q0 su
h that P � P 0jP 00 and (�n)P 0 � Q and (�n)P 00 � R.6.3 Equivarian
eIn general terms, we have that an A� pro
ess P satis�es the formula nrA ifP � (�n)Q, where Q is a pro
ess that satis�es A, and n is the name denotedby n. Then n denotes a name whi
h is hidden, and hen
e not free, in P .Therefore, the revelation operator has a useful meaning also in the spe
ial
ase nrT: the pro
ess P satis�es nrT if and only if the name denotedby n is fresh in P (In Se
tion 3.6 we introdu
ed 

n as an abbreviation for:nrT). We 
an show than A ^mrT ^ nrT entails (n$m)A:3: hZ := (�n)X ; Z := (�m)Y i (n$m)Z : (n$m)A; X : T; Y : T � Z : (n$m)A2: hZ := (�n)X ; Z := (�m)Y i Z : A; X : T; Y : T � Z : (n$m)A (by 3, (TL))1: hi Z : A ^mrT ^ nrT � Z : (n$m)A (by 2, (^L and rL))40



(Note the use of (Swap Erase) in step 3, proved by (Id), to show (n$m)Z := Zw.r.t. the 
onstraint part of the sequent) This property 
an be interpreted assaying that, for any pro
ess P , if it satis�es A, it also satis�es (n$ m)Afor any fresh names m and n. This fa
t is a 
onsequen
e of the equivarian
eproperty of the semanti
s: intuitively, if the name denoted by (say) m o

ursin the formula A but not in the pro
ess P , then we would expe
t the name mto be irrelevant to the fa
t that P satis�es A. This means that if we swap informula A the name m by any other fresh name n, we would expe
t that Pwould still satisfy it (sin
e a fresh name is as good as any other fresh name).For example, the following provable sequenthn#p;m#pi X : nr(phnijT) ^mrT ^ nrT � X : mr(phmijT)says that if a pro
ess is about to send a fresh name on a publi
 
hannel p, it
an send any other fresh name as well.6.4 InputIn our logi
 we have a primitive formula to observe messages, nhmi, 
orre-sponding to the output operator of the asyn
hronous �-
al
ulus. We do nothave a 
orresponding input formula, but it 
an be expressed from output alongthe lines of [20℄. The guarantee operator is 
ru
ial to this; re
all that a pro
essP satis�es A . B if for any Q that satis�es A, we have that P jQ satis�es B(this 
an be read out from (.R)). We say that P satis�es B "in presen
e" ofany Q that satis�es A. We 
an take the following de�nition of input:x(y):A M= 8y:xhyi . �AThe intention is that a pro
ess satis�es the input spe
i�
ation x(y):A if itperforms an input over a given 
hannel x of any name y (with y bound in A),and then satis�es the property A. The above de�nition says literally, that aninput pro
ess is one that, in presen
e of any output message y over the given
hannel x, at the next step (after input) it behaves a

ording to A.It is then easy to verify that be
ause of the adjun
tion between j and .,input and output intera
t as expe
ted in �-
al
ulus 
ommuni
ation, that is,xhzijx(y):A entails �Afy zg:4:2: hS; u = X jY i�; X : xhzi � X : xhzi; u : �Afy zg;� (by (Id))4:1: hS; u = X jY i�; X : xhzi; X jY : �Afy zg � u : �Afy zg;� (by (Id))3: hS; u = X jY i�; X : xhzi; Y : xhzi . �Afy zg � u : �Afy zg;� (by 4.1-2, (.L))2: hS; u = X jY i�; X : xhzi; Y : 8y:xhyi . �A � u : �Afy zg;� (by 3, (8L))1: hSi�; u : xhzij(8y:xhyi . �A) � u : �Afy zg;� (by 2, (jL))41



So we have that the following sequent is derivable:hSi�; u : xhzijx(y):A� u : �Afy zg;� (I/O)6.5 HidingIn Part I and Se
tion 3.6 we de�ned a hiding quanti�er: Hx:AM=Ix:xrAwhi
h is related to �-
al
ulus name restri
tion in an appropriate way; namely,that if pro
ess P satis�es formula Afx ng, then (�n)P satis�es Hx:A, wheren is a (fresh) name denoted by n. An interesting use of Hx:A is in spe
ifying\non
e generators", that is pro
esses that output freshly generated names ona given 
hannel. In �-
al
ulus, a non
e generator 
an be written simply as(�n)n
hni, for a given 
hannel n
. A non
e generator over n
 
an then bespe
i�ed by the following formula:
Nc

M= Hx:n
hxiWe 
an show that, when a non
e generator intera
ts with an input, the resultis the a
quisition of a private name:hSi�; u : Nc jn
(y):A� u : �Hz:Afy zg;� (BI/O)Before input we have a non
e generator Nc separate from the input pro
ess.After one step, we have that the A part has a
quired a name z; but noti
eablythis z is "hidden" within Afy zg by the s
ope of the hiding quanti�er. Hen
ethe A part of the system has a
quired, from the non
e generator, a privatename not shared with other parts of the system (at least, not yet).6.6 Re
ursive PropertiesWe show a 
ouple of derivations involving re
ursive formulas and freshness.As a �rst example, 
onsider the following formulasWriter M=�X:(xhyijX) ReaderM=�Y:(x(y):Y ) LiveLo
kM=�Z:�ZThus, a pro
ess that satis�es Writer is able to send an unbounded numberof messages xhyi. Likewise, a pro
ess that satis�es Reader has 
ontinuouslyenabled the 
apability of 
onsuming the message xhyi. We 
an prove that the
omposition of Writer and Reader has a non-terminating 
omputation path:this fa
t 
an be expressed by the sequenthi X : ReaderjWriter � X : Livelo
kWe abbreviate B M= xhyijWriterjx(y):Reader, so that the formula B is the onestep unfolding of the formula ReaderjWriter. Let also M be the sequent 
on-42



text expressing the monotoni
ity assumptions (see Se
tion 4) for the re
ursiveformulas Reader and Writer in the example (the proof of M is also ratherme
hani
al): M M= (xhyijX)fX+g; (x(y):Y )fY +g. We 
an then use a standard
oindu
tive argument to show the statement:4: hiM; X : ReaderjWriter; Y : B � Y : �ReaderjWriter (by I/O)3: hiM; X : ReaderjWriter; Y : B � Y : �B (by 4, (Unfold))2: hiM; X : ReaderjWriter � X : B (by (Unfold), (Id))1: hiM; X : ReaderjWriter � X : Livelo
k (by 2, 3 (�R))1: hi X : ReaderjWriter � X : Livelo
k (by (Cut), with hi �M)As a se
ond example of the use of re
ursion, extending the one in Se
tion 6.5,we spe
ify a re
ursive non
e generator (a pro
ess produ
ing an unboundednumber of fresh names) by follows: UNc M= �X:Nc jX. As in our last example,we 
an then show
X : UNc jUNc � X : UNcThis is simple but signi�
ant: it means that (without any knowledge of the�-
al
ulus implementation) two re
ursive non
e generators running in parallelbehave like a single re
ursive non
e generator; in parti
ular, the two generatorsdo not risk generating independently the same name twi
e.7 Con
lusionWe have presented a sequent 
al
ulus that has a dire
t interpretation in termsof distributed 
on
urrent behaviors, in
luding notions of resour
e hiding. Webelieve we have obtained a unique 
ombination of, on one hand, good proof-theoreti
al stru
tures and properties, and, on the other hand, dire
t appli-
ability to 
on
urren
y. These twin aims have driven us towards a \manyworlds" formulation of modal sequents that has been able to a

ommodate awide range of unusual but strongly motivated logi
al 
onstru
tions.
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Given a name term m and a list of distin
t name variables ~x, we write S(m; ~x)for the set of all maximal subterms of the name term m that do not 
ontaino

urren
es of name variables x in the list ~x. In a similar way, given a formulaA and a list of distin
t (name or propositional variables) ~x, we write S(A; ~x)for the set of all logi
ally free terms in formula A that do not 
ontain o

ur-ren
es of some name or (propositional) variable x in the list ~x. More pre
isely:S(A; ~x)M=fn j n 2 lft(A) and fv(n) \ ~x = ;g N.B. S(A; ;) = lft(A).Lemma 8.1 Let p; q;m be name terms su
h that p; q#S S(A; ~x), where ~x isa list of distin
t name variables, and ~n is a mat
hing list of name terms (for~x). Then (p$q)(mf~x ~ng) :=S mf~x (p$q)~ng.Proof. Indu
tion on the stru
ture of the name term m.Lemma 8.2 Let p; q be name terms and A a normalized formula su
h that
p; q#S S(A; ~x), where ~x is a list of distin
t variables, and ~n is a mat
hing listof name and propositional terms. Then (p$q)(Af~x ~ng) +S Af~x ~(p$q)ng.Proof. Indu
tion on the stru
ture of the formula A. The result is in all 
ases adire
t 
onsequen
e of the indu
tion hypothesis; in the 
ase of formulas men-tioning name terms, the result follows from Lemma 8.1. We detail two 
ases.(Case of A = mrB) We must have (p$q)(Af~x ~ng) +S m

0rB0 where(p $ q)(Bf~x ~ng) +S B0 and m
0 :=S (p $ q)(mf~x ~ng). Note that wemust have p; q#S S(m; ~x). Therefore, by Lemma 8.1, we 
on
lude m

0 :=S
mf~x (p$q)~ng. By indu
tion hypothesis, we 
on
lude (p$q)(Bf~x ~ng) +SBf~x (p$q)~ng. Hen
e (p$q)(Af~x ~ng) +S mf~x (p$q)~ngr(Bf~x (p$
q)~ng) = Af~x (p$q)~ng.(Case of A = Iz:B) We have (p $ q)Af~x ~ng +S Iz:B0 where (p $
q)Bf~x; z ~n; (p$ q)zg +S B0. We 
an the apply the indu
tion hypothesis(note that S(Iz:B; ~x) = S(B; ~x[fzg), and 
on
lude (p$q)Bf~x; z ~n; (p$
q)zg +S Bf~x; z (p$ q)~n; zg. Hen
e (p$ q)Af~x ~ng +S Iz:(Bf~x (p$
q)~ng) = Af~x (p$q)~ng.Theorem 3.22 [Soundness℄ All sequents derivable in S are valid in A�.Proof. We show that all inferen
e rules are sound. An inferen
e rule is sound ifthe sequent in the 
on
lusion is valid provided all the sequents and assertionso

urring as premises are valid (see De�nitions 3.12 and 3.16). Cases of (Id),(Cut), (FL), (FR), (^L), (^R), ()L) and ()R) are standard.� (Case of (TL)) Let J be an interpretation for the sequent hSi�; u : A � �su
h that J satis�es S and all of �; u : A. Then J satis�es all of � andJ (u) 2 JAKJ . Therefore, fJnKJ$JmKJ gJ (u) 2 fJnKJ$JmKJ gJAKJ =J(n$m)AKJ .Sin
e (m$ n)A �S A0 and (m$ n)u :=S u0, by Lemma 3.21(1) andLemma 3.13(2) we have J(m$n)AKJ = JA0KJ and fJnKJ$JmKJ gJ (u) �J (u0). We 
on
lude J (u0) 2 JA0KJ .� (Case of (TR)) Similar to (TL). 46



� (Case of (S�j)) Let J be an interpretation for the sequent hSi� � � inthe 
on
lusion su
h that J satis�es S and J satis�es all of �. In parti
ular,we have (�J (x))J (u) � J (t)jJ (v). By Proposition (Part I)2.13(2) [4℄,there are pro
esses P and Q su
h that t � (�J (x))P , v � (�J (x))Q, andJ (u) � P jQ. Let J 0 M=J fX PgfY Qg.J 0 satis�es hS; u := X jY ; (�x)X := t; (�x)Y := vi. Sin
e X and Y do noto

ur in � and �, we have that J 0 satis�es all of �, hen
e by validity of thepremises it also satis�es some of �. So J satis�es some of �.� (Case of other (S�) rules). Like with (S�j) above, soundness is a 
on-sequen
e of the inversion properties of Proposition (Part I)2.13 [4℄.� (Case of (0R)) Let J be an interpretation for the sequent hSi� � �in the 
on
lusion, and assume that J satis�es S. Hen
e J (u) � 0, thusJ (u) 2 J0Kv.� (Case of (0L)) Let J be an interpretation for hSi�� �, and assume thatJ satis�es all of �; u : 0. Hen
e J (u) � 0, and J satis�es hS; u := 0i. Byvalidity of the premise, J satis�es some of �.� (Case of (jR)) Let J be an interpretation for the sequent hSi� � �in the 
on
lusion, and assume that J satis�es S and J satis�es all of �.By assumption, J (u) � J (v)jJ (t). If J satis�es some of �, we have the
on
lusion. Otherwise, by validity of the premises, we must have J (v) 2JAKJ and J (t) 2 JBKJ . From that, we 
on
lude J (u) 2 JAjBKJ .� (Case of (jL)) Let J be an interpretation for the sequent in the 
on
lusion,and assume that J satis�es S and J satis�es all of �; u : AjB. Thus,there are P and Q su
h that J (u) � P jQ, P 2 JAKJ and Q 2 JBKJ . LetJ 0 M=J fX PgfY Qg: then J 0 satis�es hS; u := X jY i and J 0 satis�es all of�; X : A; Y : B. To 
on
lude, note that by assumption J 0 satis�es some of�, and that J 0 agrees with J on �.� (Case of (.R)) Let J be an interpretation for the sequent in the 
on-
lusion, and assume that J satis�es S and J satis�es all of �. Pi
k anypro
ess P 2 JAKJ . Sin
e X does not o

ur in the 
on
lusion, the inter-pretation J P M=J fX Pg) also satis�es S and all of �; X : A. By assump-tion, J P (v) 2 JBKJ P = JBKJ . But J P (v) � P jJ P (u) = P jJ (u). Hen
eP jJ (u) 2 JBKJ , for all pro
esses P 2 JAKJ . We 
on
lude J (u) 2 JA.BKJ .� (Case of (.L)) Let J be an interpretation for the sequent in the 
on
lusion,and assume that J satis�es S and J satis�es all of �; u : A . B. Thus, forall pro
esses P su
h that P 2 JAKJ we have that P jJ (u) 2 JBKJ . Sin
eJ satis�es all of �, by validity of the left premise either J satis�es t : Aor J satis�es some of �. In the latter 
ase, we 
an 
on
lude. Otherwise,J (t) 2 JAKJ . Then J (tju) 2 JBKJ , hen
e J satis�es all of �; tju : B. Byvalidity of the right premise, we also 
on
lude that J satis�es some of �.� (Case of (�R)) and (Case of (�L)) By Lemma 3.13(2).� (Cases of (rL), (rR), (�L), and (�R)) Like (jR), (jL), (.L) and (.R).� (Case of (8R)) Let J be an interpretation for the sequent hSi� � u :8x:A;� in the 
on
lusion su
h that J satis�es S and J satis�es all of �.Pi
k any name n 2 � and de�ne J n M=J fx ng; J n is then an interpretation47



for the sequent hSi� � u : A;� in the premise. Note that for all namesn, J n satis�es S and J n satis�es all of �, sin
e x does not o

ur free inthe 
on
lusion of the rule. Hen
e, by validity of the premise, J n satis�essome of u : A;�, for all n. Now, suppose there is an interpretation J n thatsatis�es some of �. Then also J satis�es some of � sin
e x is not free in�, and we have the 
on
lusion. Otherwise, we must have J n(u) 2 JAKJ nfor all names n. But then, J (u) 2 J8x:AKJ .� (Case of (8L)) Let J be an interpretation for the sequent hSi�; u : 8x:A �� in the 
on
lusion su
h that J satis�es S, J satis�es all of �; u : 8x:A.Hen
e, we have J (u) 2 JAKJ [x p℄ for all names p, in parti
ular for n =JmKJ . Hen
e, we 
on
lude J (u) 2 JAfx mgKJ . By validity of the sequentin the premise, we 
on
lude that J satis�es some of �.� (Cases of (82R) and (82L)) The proof is similar to (8L) and (8R) above.� (Case of (I)) Let J be an interpretation for the sequent hSi� � � su
hthat J satis�es S and J satis�es all of �. Now, let P = J (u) and pi
k anyname n 62 fn(P ) su
h that n 6= J (y) for all y 2 fv(N) and n 62 supp(J (X)),for all X 2 fpv(N).When then have J (u) � (�n)J (u). De�ne J 0 M=J fx ngfX Pg. Hen
eJ 0 is an interpretation for the sequent in the premise, where J 0 satis�eshS; u := (�x)X ; x#Ni and J 0 satis�es all of � (sin
e x and X are fresh). Byvalidity of su
h sequent, we 
on
lude that J 0 satis�es some of �. Sin
e J 0agrees with J on �, we 
on
lude that J satis�es some of �.� (Case of (IR)) Let J be an interpretation for the sequent hSi� � u :Ix:A;� su
h that J satis�es S and J satis�es all of �. By validity of thepremise, J satis�es some of u : Afx ng;�. If J satis�es some of � theproof is 
on
luded. Otherwise, J (u) 2 JAfx ngKJ = JAKJ [x JnKJ ℄. Byassumption, the assertion u :=S (�n)v is valid, hen
e J (u) � (�J (n))J (v).So, JnKJ 62 fn(J (u)). Moreover, sin
e n#S Ix:A, by Lemma 3.21(2) wehave JnKJ 62 fnJ (Ix:A). Sin
e J (u) 2 JAKJ [x JnKJ ℄, J (u) 2 JIx:AKv.� (Case of (IL)) Let J be an interpretation for the sequent hSi�; u :Ix:A � � su
h that J satis�es S and J satis�es all of �; u : Ix:A. In par-ti
ular, we have J (u) 2 JAKJ [x n℄ for some n 62 fn(J (u))[fnv(Ix:A). Thus,by Theorem 2.3(3), for all names p 2 � su
h that p 62 fn(J (u))[ fnv(Ix:A)we have J (u) 2 JAKJ [x p℄. Like in the 
ase above for (IR), we 
an verifythat JnKJ 62 fn(J (u)) [ fnv(Ix:A), so that n denotes a possible freshnesswitness. Hen
e, we have J (u) 2 JAKJ [x JnKJ ℄ = JAfx ngKJ . Sin
e thepremise of the rule is valid by assumption, J satis�es some of �.Lemma 5.3 (Basi
) The size-preserving proof prin
iples (CS), (Ren), (W),(InI) and (InN ) are admissible.Proof. (CS) By indu
tion on the stru
ture of derivations, using Lemma 3.10(2).(Ren) and (�) By simultaneous indu
tion on the stru
ture of of derivations.(W) By indu
tion on the stru
ture of derivations, using Lemma 3.10(1) toshow that provability of 
onstraint premises is preserved.48



(InI) For 
larity, we abbreviate the substitution fx ug by �. Proof by in-du
tion on the stru
ture of derivations, using Lemma 3.10(3) to show thatu :=S v implies �(u) :=�(S) �(v) in all rule instan
es with assertions u :=S v aspremises, and likewise for premises of the form u!S v. The most interesting
ases are the ones whi
h introdu
e pro
ess eigenvariables, e.g.,� (Case of (jL)) hSi�; u : AjB � � is 
on
luded from hS; u := X 0jY 0i�; X 0 :A; Y 0 : B � �. By (Ren), there is a derivation of hS; u := X 00jY 00i�; X 00 :A; Y 00 : B � �, where X 00 and Y 00 are distin
t from X and do not be-long to afv(u). By indu
tion hypothesis, we have h�(S); u := X 00jY 00i�; X 00 :�(A); Y 00 : �(B) � �(�). We then 
on
lude by (jL).(InN ) For 
larity, we abbreviate the substitution fx mg by �. The proofpro
eeds by indu
tion on the stru
ture of derivations and 
ase analysis on thelast rule used, using Lemma 3.10(3) to show that all assertions that o

uras premises of rule instan
es in the derivation are preserved. We present adetailed proof for one of the spatial rules, the (I) and (TL) rules, and allthe quanti�er rules. In ea
h 
ase, note that the stru
ture of the derivation ispreserved by the transformation.� (Case of (jR)) hSi� � u : AjB;� is 
on
luded from hSi� � t : A;� andhSi� � v : B;� and u :=S tjv. By indu
tion hypothesis, we have h�(S)i� ��(t) : �(A); �(�) and h�(S)i� � �(v) : �(B); �(�). By Lemma 3.10, wehave �(u) :=�(S) �(t)j�(v). We 
on
lude by (jR).� (Case of (TL)) Suppose the instan
e of (TL) is not simple. Then hSi�; u :A � � is obtained by (TL) from hSi�; u0 : A0 � �, where (n$p)A �S A0and (n $ p)u �S u0. By indu
tion hypothesis, there is a derivation ofh�(S)i�; �(u0) : �(A0) � �(�). By Lemma 3.19(1), we have �(A0) ��(S)�((n$ p)A) = (�(n)$ �(p))�(A). By Lemma 3.10, we have �(u0) ��(S)�((n$p)u) = (�(n)$�(p))�(u). We then obtain the 
on
lusion by (TL).In the 
ase where the instan
e of (TL) is simple, we 
an along similar linesobtain a derivation of size equal to one for h�(S)i�(�); �(u) : �(A) � �(�)by instantiating every sequent in the given derivation with �.� (Case of (I)) hSi� � � is obtained by (I) from hS; u := (�z)X ; z#Ni���, where z and X do not o

ur free in the 
on
lusion and u, and N is a�nite set of names not 
ontaining z.By (�) we may assume that z 6= x and z 62 afv(m). By indu
tion hy-pothesis, we have h�(S); �(u) := (�z)X ; z# �(N)i�(�) � �(�). Let M =afv(�(N)). By (W), h�(S); �(u) := (�z)X ; z# �(N); z#Mi �(�) � �(�).Write S 0 M= h�(S); �(u) := (�z)X ; z#Mi. Sin
eM = afv(�(N)) and z#S0 M ,we 
an verify that z#S0 �(N).By (CS) we have h�(S); �(u) := (�z)X ; z#Mi �(�) � �(�). Now, notethat z does not o

ur free in �(S), in �(�), u or M , or in �(�), be
auseit does not o

ur free in m, nor in the 
on
lusion of the original sequent.Hen
e, by (I), we obtain the 
on
lusion h�(S)i�(�)� �(�).� (Case of (8R)) The sequent hSi� � u : 8z:A;� is 
on
luded from thesequent hSi� � u : Afz yg;�, where y does not o

ur free in the 
on
lu-49



sion. By (Ren) we 
an assume that y does not o

ur (free or bound) neitherin the initially given sequent nor in m. By indu
tion hypothesis, we haveh�(S)i�(�) � �(v) : �(Afz yg); �(�). We have �fz zg(A)fz yg ���(Afz yg). By (�), h�(S)i�(�) � �(v) : �fz zg(A)fz yg; �(�). By(8R) we 
on
lude h�(S)i�(�) � �(v) : �(8z:A); �(�), sin
e �(8z:A) =8z:�(Afz zg).� (Case of (IR)) We have the sequent hSi� � u : Iz:A;�, 
on
ludedby (I) from a derivation of hSi� � u : Afz ng;�, where u :=S (�n)vand n#S Iz:A. By indu
tion hypothesis, we have h�(S)i�(�) � �(u) :�(Afz ng); �(�). By Lemma 3.10(3), we have �(u) :=�(S) (��(n))�(v).Note that �(Iz:A) �� Iy:�(Afz yg) for some y 62 afv(m; x) [ fv(A).Sin
e lfv(Iz:A) = lfv(Iy:Afz yg), we also have n#S Iy:Afz yg. Notethat lft(�(Iz:A)) = f�(n) j n 2 lft(Iz:A)g.So, by Lemma 3.10(3), we 
on
lude �(n)#�(S) �(Iy:Afz yg). By (IR)and (�), we 
an build a derivation h�(S)i�(�) � �(u) : �(Iz:A); �(�),sin
e �(Afz yg)fy �(n)g �� �(Afz ng).� (Case of (8L)) We have a derivation of hSi�; u : 8z:A � � 
on
ludedfrom a derivation of hSi�; u : Afz ng � �. By indu
tion hypothesis, wehave h�(S)i�(�); �(u) : �(Afz ng) � �(�). By (�) and (8L), we 
on-
lude h�(S)i�(�); �(u) : �(8z:A) � �(�), sin
e we have that �(8z:A) ��8y:�(Afz yg) for some y 2 afv(m; x) [ fv(A) and we 
an verify that�(Afz yg)fy �(n)g �� �(Afz ng).� (Case of (IL)) Similar to (IR).Lemma 5.5 Every sequent of the form hSi�; u : A � u : A;�, where A isnot atomi
, has a 
ut- and 
ontra
tion-free derivation.Proof. By indu
tion on the stru
ture of the formula A we show that thissequent has a derivation in the stated 
onditions: in the base 
ase the sequentis itself an instan
e of (Id). We show a few 
ases:� (Case of A = A1jA2) By indu
tion hypothesis, there are derivations ofhS; u := X jY i�; X : A1; Y : A2 � X : A1;� and hS; u := X jY i�; X : A1; Y :A2 � Y : A2;�. By (jR) we get hS; u := X jY i�; X : B1; Y : B2 � u :A1jA2;�. We then 
on
lude by (jL).� (Case of A = A1 . A2) By indu
tion hypothesis, there are derivations ofhSi�; X : A1 � X : A1;� and hSi�; X : A1; X ju : A2 � X ju : A2;�. By (.L)we get hSi�; u : A; X : A1 � X ju : A2;�. We 
on
lude by (.R).� (Case of A = Ix:B) Let N be the set of all name and propositional vari-ables o

urring free in the given sequent. Let hS 0i M= hS; u := (�y)X ; y#Ni,where X and y are also 
hosen not free in the sequents under 
onsideration.By indu
tion hypothesis, hS 0i�; u : Bfx yg � v : Bfx yg�. Note thaty#S0 Ix:B and u :=S0 (�y)X . We 
on
lude by (IL), (IR), and (I).Lemma 8.3 (Basi
 Simpli�
ation) Assume (n $ m)u :=S u0 and (n $
m)A +S A0, � +S �0 and � +S �0. Then we have:50



(1) If `1 hSi� � u : A;� in S then `1 hSi�0 � u0 : A0;�0 in S1.(2) If `1 hSi�; u : A � � in S then `1 hSi�0; u0 : A0 � �0 in S1.Proof.We prove (1), the proof for (2) is similar. The proof rests on the followingobservation: if there is a derivation of hSi� � u : A;� built just from (Id),(TL) and (TR), then there are formulas B and B0 su
h that � = �l; t : B andu : A;� = t0 : B0;�r and �B �S �B0 and �t :=S �t0, hen
e ��1�B �S B0.Lemma 5.8 (Simpli�
ation) Assume (n$m)u :=S u0 and (n$m)A +SA0, � +S �0 and � +S �0. Then the following size-preserving proof prin
iplesare admissible:(1) If `n hSi�� u : A;� in S then `n hSi�0 � u0 : A0;�0 in S1.(2) If `n hSi�; u : A � � in S then `n hSi�0; u0 : A0 � �0 in S1.The resulting derivations are simple and normalized. Moreover, if the originalderivations are 
ut-free then the resulting ones are also 
ut-free.Proof. The proof pro
eeds by mutual indu
tion on the size of the derivations(1) `n hSi� � u : A;� and (2) `n hSi�; u : A � �. We show the proof for(1), the 
ase of (2) is handled in a similar way.(Case of (1)). Assume `n hSi� � �; u : A. Possible ways of deriving thissequent are: (1) the last rule is a logi
al rule a
ting on a formula in � or �,(2) the last rule is a world rule a
ting on S or (I), or (3) the last rule is (Id),(Cut) or a logi
al right rule a
ting on the prin
ipal formula u : A.(Sub
ase 1) The result follows from the indu
tive hypothesis, possibly using(Ren) in the (8R) 
ase.(Sub
ase 2) If the last rule is some world (S�) rule, the result is an immediate
onsequen
e of the indu
tion hypothesis. If the last rule is (I), the sequenthSi� � u : A;� is 
on
luded from `n�1 hS; v := (�x)X ; x#Ni� � u : A;�.By (Ren), there is a derivation `n�1 hS; v := (�y)X ; y#Ni� � t : A;�, wherey is 
hosen not free neither in the original sequent, nor in �0;�0; u0 : A0. Byindu
tion hypothesis, we 
on
lude `n�1 hS; v := (�y)X ; y#Ni�0 � u0 : A0;�0.By (I), hSi�0 � u0 : A0;�0 is obtained. We now address (Sub
ase 3).� (Case of (Id)) By Lemma 8.3(1).� (Case of (Cut)) We have hSi� � �; u : A 
on
luded from `n�1 hSi� ��; u : A; v : B and `n�1 hSi�; v : B � �; u : A. Let B +S B0. By indu
tionhypothesis, we have `n�1 hSi�0 � �0; u0 : A0; u : B0 and `n�1 hSi�0; u :B0 � �0; u0 : A0. We then 
on
lude by (Cut).� (Case of (CR)) We have hSi� � �; u : A 
on
luded from `n�1 hSi� ��; u : A; u : A. By the indu
tion hypothesis, we have `n�1 hSi�0 � �0; u0 :A0; u : A00, where A +S A00. Again by indu
tion hypothesis, we 
on
lude`n�1 hSi�0 � �0; u0 : A0; u0 : A0, sin
e A00 +S A0. We then 
on
lude by (CR).� (Case of (TR))We 
onsider �rst the 
ase where the appli
ation of (TR) isnot simple. We have hSi�� u : A;� 
on
luded from `n�1 hSi� � v : B;�,where B �S (p$ q)A and v :=S (p$ q)u. Hen
e (p$ q)B �S A and(p$q)v :=S u. By Lemma 3.19(2) there is B0 su
h that (p$q)B +S B0 and51



A +S B0. By indu
tion hypothesis, we 
on
lude `n�1 hSi�0 � u : B0;�0.Sin
e (n $ m)A +S A0 we also have (n $ m)B0 +S A0. Again by theindu
tion hypothesis, we 
on
lude `n�1 hSi�0 � u0 : A0;�0. Otherwise,suppose the appli
ation of (TR) is simple. Then, we have `1 hSi� � u :A;�. By Lemma 8.3(1), we 
on
lude `1 hSi�0 � u0 : A0;�0.� (Case of (^R)) We have A = B ^C and hSi� � �; u : A 
on
luded from`n�1 hSi� � �; u : B and `n�1 hSi� � �; u : C. We have A0 = B0 ^ C 0with (n$m)B +S B0 and (n$m) +S C 0. By indu
tion hypothesis, wehave `n�1 hSi�0 � �0; u0 : B0 and `n�1 hSi�0 � �0; u0 : C 0. By (^R), we
on
lude `n hSi�0 � �0; u0 : A0.� (Case of ()R))We have A = B ) C and hSi� � �; u : A 
on
luded from`n�1 hSi�; u : B � �; u : C. We have A0 = B0 ) C 0 with (n$m)B +S B0and (n$m) +S C 0. By indu
tion hypothesis, we have `n�1 hSi�0; u0 : B0 ��0; u : C. By indu
tion hypothesis again, `n�1 hSi�0; u0 : B0 � �0; u0 : C 0.By ()R), we 
on
lude `n hSi�0 � �0; u0 : A0.� (Case of (jR)) We have A = BjC and hSi� � �; u : A 
on
luded fromhSi� � �; t : B and hSi� � �; v : C, where tjv :=S u. We have A0 = B0jC 0with (n$m)B +S B0 and (n$m) +S C 0 and u0 :=S (n$m)u :=S (n$
m)tj(n$m)v. By indu
tion hypothesis, we have hSi�0 � �0; (n$m)t : B0and hSi�0 � �0; (n$m)v : C 0. By (jR), we 
on
lude `n hSi�0 � �0; u0 : A0.� (Case of (.R)) We have A = B . C and hSi� � �; u : A 
on
luded from`n�1 hSi�; X : B � �; v : C and v :=S X ju, where X does not o

ur in the
on
lusion. We have A0 = B0 .C 0 with (n$m)B +S B0 and (n$m) +S C 0.By indu
tion hypothesis (twi
e) we have `n�1 hSi�0; (n $ m)X : B0 ��0; (n$m)v : C 0.By (InI) with fX (n$m)X g and indu
tion hypothesis, we have `n�1hSi�0; X : B0 � �0; X jv : C 0, sin
e ((n$m)v)fX (n$m)X g :=S ((n$
m)X ju)fX (n$m)X g :=S X ju0, be
ause u0 :=S (n$m)u by assumption.By (.R), we 
on
lude `n hSi�0 � �0; u0 : A0.� (Case of (�R)) We have A = �B and hSi� � �; u : A 
on
luded from`n�1 hSi� � �; v : B and t!S v. We have A0 = �B0 where (n$m)B +SB0. By indu
tion hypothesis, `n�1 hSi�0 � �0; u0 : B0. By (�R), we 
on
lude`n hSi�0 � �0; u0 : A0, sin
e u = (n$m)t!S (n$m)v by (Swap Red).� (Case of (rR)) We have A = qrB and hSi� � �; u : A 
on
ludedfrom `n�1 hSi� � �; v : B and t :=S (�q)v. We have A0 = q

0rB0 with
q
0 :=S (n $ m)q and (n $ m)B +S B0. By indu
tion hypothesis, `n�1hSi�0 � �0; (n$m)v : B0. By (rR), we 
on
lude `n hSi�0 � �0; u0 : A0,sin
e (�q

0)(n$m)v :=S u0 :=S (n$m)u.� (Case of (�R)) Similar to (rR).� (Case of (IR)) We have A = Ix:B and hSi� � u : A;� 
on
ludedfrom `n�1 hSi� � u : Bfx pg;� where p#S Ix:B, and u :=S (�p)v.By (�) we 
an assume that x is not free in n;m or S, so that A0 =Ix:B0 with (n$m)Bfx (n$m)xg +S B0. Let (n$m)Bfx pg +SB00, by indu
tion hypothesis we 
on
lude `n�1 hSi�0 � u0 : B00;�0. Wehave (n $ m)Bfx (n $ m)xgfx (n $ m)pg �S (n $ m)Bfx pg.52



By Lemma 3.19(1), we have (n $ m)Bfx pg +S B0fx (n $ m)pg.Hen
e B0fx (n$m)pg �S B00, and a
tually B00 +S B0fx (n$m)pg,sin
e both formulas are normalized. By indu
tion hypothesis again, wehave `n�1 hSi�0 � u0 : B0fx (n $ m)pg;�0. By (IR), we 
on
lude`n hSi�0 � �0; u0 : A0, sin
e by Lemma 3.10(3) (n $ m)p#S A0, andu0 :=S (n$m)u :=S (�(n$m)p)(n$m)v.� (Case of (8R)) We have A = 8x:B and hSi� � u : A;� 
on
ludedfrom `n�1 hSi� � u : Bfx yg;�, where y is not free in the 
on
lusion,and by (Ren) we 
an also assume that y is not free in �0;�0; A0; u0. By(�) we 
an assume that x does not o

ur in n;m; S, so that A0 = 8x:B0where (n $ m)Bfx (n $ m)xg +S B0. By Lemma 3.19(1), we obtain(n$m)Bfx (n$m)yg +S B0fx yg. By (InN ) with fy (n$m)ygwe have `n�1 hSi� � u : Bfx (n$m)yg;�. Sin
e (n$m)Bfx (n$
m)yg +S B0fx yg, by indu
tion hypothesis, we have `n�1 hSi�0 � u0 :B0fx yg;�0. By (8R) we 
on
lude `n hSi�0 � u0 : A0;�0.Lemma 5.13 (Inversion)Proof. By indu
tion on the size of the derivation of the given sequents and
ase analysis in the last rule used. We present a detailed argument for (7), theother 
ases are handled in a similar way.If `n hSi�; u : AjB � � then `n hS; u := X jY i�; X : A; Y : B � �, for any
X ; Y not free in the �rst sequent.We 
onsider three sub
ases: (a) If the last step is an appli
ation of (jL) to thedistinguished formula u : AjB, the proof is 
on
luded.(b) The last step in an appli
ation of (SL) to the distinguished formula u : AjB.Hen
e we have `n�1 hSi�; u0 : A0jB0 � �, where (n$m)A +S A0jB0 andu0 :=S (n$m)u. By indu
tion hypothesis, we have `n�1 hS; u0 := X jY i�; X :A0; Y : B0 � �. By (InI) we have `n�1 hS; u0 := (n$m)X j(n$m)Y i�; (n$
m)X : A0; (n $ m)Y : B0 � �. By Lemma 5.8(2) (twi
e), we have `n�1hS; u0 := (n$m)X j(n$m)Y i�; X : A; Y : B � �, sin
e (n$m)B0 +S B,(n$m)A0 +S A and all formulas in � and � are normalized. By (W) and(CS), we 
on
lude `n�1 hS; u := X jY i�; X : A; Y : B � �.(
) Otherwise, the sequent hSi�; u : AjB � � is 
on
luded from k = 1 or k = 2premises of the form hSii�i; u : AjB � �i, for i = 1; : : : ; k and possibly somepremises of the form S ` 
, by an appli
ation of some inferen
e rule (R ) a
tingeither on a prin
ipal formula in � or �, or in hSi. By indu
tion hypothesis,we 
on
lude `n�1 hSi; u := X jY i�i; X : A; Y : B � �i for i = 1; : : : ; k, where
X and Y 
an be 
hosen fresh with respe
t to S, Si, �, �, �i and �i (so thatany eigenvariable 
ondition required for applying (R ) still holds). By (R ), we
on
lude `n hS; u := X jY i�; u : A; u : B � �.Lemma 5.14 (Contra
tion Elimination) In the system CF the followingsize-preserving proof prin
iples are admissible, provided the sequents shownare normalized 53



`n hSi� � u : A; u : A;�`n hSi�; u : A � � (CR) `n hSi�; u : A; u : A � �`n hSi�; u : A � � (CL)The resulting derivations are normalized. Moreover, if the original derivationsare 
ut-free, so are the resulting derivations; if the original derivations aresimple, so are the resulting derivations.Proof. The prin
iples (CL) and (CR) are proved by mutual indu
tion on thesize of the respe
tive derivations. If the last rule of the derivation is a world(S�) rule, (Cut), or a logi
al rule other than (Id), applying to some formulain � or �, the result follows dire
tly by the indu
tion hypothesis. If last ruleis (Id), identifying atomi
 formulas in � or �, then hSi� � � is an instan
eof (Id). The 
on
lusion 
an then be obtained by adding the required formulasto the left and right 
ontext of this sequent. Otherwise, we 
onsider the 
aseof ea
h possible rule a
ting on one of the distinguished o

urren
es of u : A.We 
onsider a few 
ases for (CR), (CL) is handled in a similar way.� (Case of (Id)) Immediate, for just one of the u : A 
an be relevant to (Id).� (Case of (SR) If this o

urren
e of (SR) is simple, then just one of theo

urren
es of u : A is used in the (Id) axiom below it, so we immediately
on
lude `1 hSi� � u : A;�. Otherwise, we have that hSi� � u : A; u :A;� results from `n�1 hSi� � u0 : A0; u : A;� where (n$m)u :=S u0 and(n$m)A +S A0. By Lemma 5.8(1), we have `n�1 hSi�� u0 : A0; u0 : A0;�.By indu
tion hypothesis, we 
on
lude `n�1 hSi� � u0 : A0;�. By (SR) we
on
lude `n hSi� � u : A;�.� (Case of (jRK)) We have A = BjC and hSi�� u : A; u : A;� 
on
ludedfrom `n�1 hSi� � v : B; u : A; u : A;� and `n�1 hSi� � t : C; u : A; u :A;� and vjt :=S u. By indu
tion hypothesis, we have `n�1 hSi� � v : B; u :A;� and `n�1 hSi� � t : C; u : A;�. We 
on
lude by (jRK).� (Case of (.R)) We have A = B . C and `n hSi� � u : A; u : A;�
on
luded from `n�1 hSi�; X : B � v : C; u : A;� and v :=S X ju. ByLemma 5.13(6), we have `n�1 hSi�; X : B; Y : B � v : C; Y ju : C;� forsome fresh Y . By (InI) we get `n�1 hSi�; X : B; X : B � v : C; X ju : C;�.By Lemma 5.8(1) with the identity permutation, we 
on
lude `n�1 hSi�; X :B; X : B � v : C; v : C;�, sin
e v :=S X ju. By indu
tion hypothesis, we get`n�1 hSi�; X : B � v : C;�. The 
on
lusion follows by (.R).� (Case of (8R)) We have A = 8x:B and hSi� � u : A; u : A;� 
on-
luded from `n�1 hSi� � u : Bfx yg; u : A;�, where y is not free inthe 
on
lusion. By Lemma 5.13(5), we have `n�1 hSi� � u : Bfx yg; u :Bfx zg;�, where z is not free in the 
on
lusion. By (InN ) with fz yg,we have `n�1 hSi� � u : Bfx yg; u : Bfx yg;�. By the indu
tionhypothesis, we get `n�1 hSi� � u : Bfx yg;� and we 
on
lude by (8R).� (Case of (IRK)) We have A = Ix:B and hSi� � u : A; u : A;� 
on-
luded from `n�1 hSi� � u : Bfx pg; u : A; u : A;� where p#S Ix:B,and t :=S (�p)v. By indu
tion hypothesis, `n�1 hSi� � u : Bfx pg; u :A;�, we then 
on
lude by (IRK).54


