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Abstract

We present a modal logic for describing the spatial organization and the behavior
of distributed systems. In addition to standard logical and temporal operators, our
logic includes spatial operations corresponding to process composition and name
hiding, and a fresh name quantifier. In Part I of this work we study the fundamental
semantic properties of our logic; the focus of the present Part II is on proof theory.
The main contributions are a sequent-based proof system for our logic, and a proof
of cut-elimination for its first-order fragment.

1 Introduction

We develop a logic to describe properties of distributed concurrent systems, for
specification and model-checking purposes; we believe that the peculiar char-
acteristics of such systems justify the introduction of new logical constructs.

Our first emphasis is on distributed systems, meaning that we should be able to
talk about properties of distinct subsystems, such as subsystems that reside at
different locations, and subsystems that privately share hidden resources. For
this purpose, we introduce spatial (as opposed to temporal) logical operators;
for example, we may talk about a property holding somewhere (as opposed to
sometimes). Our second emphasis is on concurrent systems: we want a logic
that unambiguously talks about concurrency and (nowadays) privacy. For this
purpose, the intended model of our logic is built explicitly from a standard
process calculus (an asynchronous 7-calculus). Our formulas denote collections
of processes subject to certain closure conditions, with some logical operators
mapping directly to process composition and name hiding.
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In Part I of this paper [2,4] we study this intended model, which is used here
to establish the soundness of the logical rules. The central focus of this Part
IT, however, is proof theory. We regularize and generalize the logics introduced
in [1,10,11], and we prove a cut-elimination result for the first-order fragment,
including cut-elimination for a fresh name quantifier (¢f. Nominal Logic [18]).

A formula in our logic describes a property of a particular part of a concurrent
system (a world) at a particular time; therefore it is modal in space as well as in
time. In our sequents, formulas are indexed by the worlds they predicate over
[21], so a sequent can talk about many distinct worlds at once. Each sequent
incorporates also a finite set of constraints over the worlds, including process
reduction and congruence constraints. In general, the constraint structure can
be fashioned as an algebra [24]; which in our case is a relatively complex
process algebra.

The fragment of our logic that deals with process composition is relatively
straightforward: composition shows up in the logic as a tensor, which is strongly
related to linear connectives. The sequent-style presentation of this fragment
should look relatively familiar, except for the constraints part. The relevant
constraints are essentially constraints over a (concurrency) monoid, with some
specific interactions with reduction. Along these lines, we could also easily add
an explicit structure of locations to the process calculus, and related logical
operators, as done in [10].

Far less obvious is what to do about hiding of private resources, which is
represented in 7-calculus by the name hiding operator. The hiding of a name
in a process should correspond, logically, to a “hiding quantifier” that binds
a private name in a formula; such a formula could then describe the use of
that private name in the process. The study of such a quantifier, from a logical
point of view, was started in [5,1], and later independently in [11]. Our current
understanding is that it is best to decompose such a hiding quantifier into two
operators: a modal version of the fresh quantifier of Gabbay and Pitts [14],
and a logical operator, called revelation [11], that relates to name hiding in
strong analogy to the way tensor relates to process composition. A simple
combination of fresh quantification and revelation then yields hiding, in the
intuitive sense that if something is hidden, we can choose to name it (reveal
it) by any name that is fresh.

Many natural examples of use of our logic involve recursive formulas. Two
typical examples of recursion that attract us in our context are: (1) a process
having an arbitrary number of hidden resources, and (2) a process generating
an infinite supply of fresh names. Particularly, the interaction of recursion and
freshness is semantically quite challenging, and was investigated in Part I.

Structurally, our logic consists of a collection of left-right rules for logical
operators, including essentially the standard rules of classical sequent calculus,
plus the ones for temporal and spatial operators. In addition, there are special



(S)T + A Sequents, of the form
(SYuy : Ay, yup: Apv-v1: By, ..., o By
A;, B; Formulas
Ui, Vj Indexes, members of a process algebra (the worlds)

S finite set of constraints (e.g., equations, reductions)

Fig. 1. Sequents.

rules about the worlds: they add meaning to the logical operators, allowing
us to capture deep properties of process calculi without interfering very much
with the core left-right rules.

We highlight here the left and right rules for composition, A|B, which include
many of the interesting features of our sequents.

Sequents (Figure 1) have the form (S)I" ~ A | where (S) is a finite set of
constraints, and I' ; A are multisets of indexed formulas. Constraints include
equality constraints, u = v, stating that « and v represent structurally con-
gruent processes.

[x and v not free in the conclusion)
(SSu=x|7)Tx: A,y : B A
(SYT,u: AlBr A

(IL)

(SYI'mv: A A (S)I'—t:B,A u=go|t (IR)
(S)T'~u: A|B,A

The (|R) rule says: if we can show that index v satisfies formula A (i.e, that
A holds at world v, written v : A), and that ¢ satisfies B, and if we can
show from the constraints in S that u is structurally congruent to v|¢, then
we can conclude that u satisfies A|B. Hence, the reading of this logical rules
incorporates much of the intended satisfaction semantics [21]. The (|L) rule
features the assumption “x and o not free in the conclusion (of the rule)”.
This assumption means, in particular, that x and 9 are completely generic
and unconstrained variables. A reading is: to show that u : A|B entails A,
we must show that for an arbitrary decomposition of u as x|y, we have that
x : A and v : B entail A.

Composition also has a number of “rules about the world”, as mentioned
above. Here is a simple one:
(S,u=0)T—A wulv=50
(SYT' A
Note that these world rules do not involve the logical connectives (we have
[' = A above and below), and instead affect the (S) part. In most process
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calculi we have that if u|v is structurally congruent to 0 then both u and v are
structurally congruent to 0. This property does not derive from (|L) and (|R),
but is embedded in (S|0). The rule reads as follows: if we can already infer
from the S part of the constraints that u|v = 0, and we have an additional
constraint that v = 0, that constraint is redundant and we can remove it. In
this style, we can incorporate many peculiar properties of process calculi as
world rules; many such rules analyze the consequences of an equation between
two spatial operators (above, | vs. 0), and are listed in Figure 12. All such
rules have a similar reading in terms of eliminating “redundant” constraints.

Because of the regular left-right structure of our core rules, cut elimination falls
largely along predictable lines; the indexes do not hinder, and rules such as
(S|0) can be dealt with separately. The main difficulty is in the cut elimination
case for the freshness quantifier. As in Nominal Logic, the result depends on
an “equivariance” property of the logic [18], which is used to perform an a-
conversion of fresh names over a whole derivation. Equivariance is embedded,
in our case, in the (TL/TR) rules in Figure 7. Expressing these rules in the
general case of open formulas, requires introducing explicit transpositions over
formulas, which entail some technical complications.

Related Work A logic for a process calculus including a tensor operator
and a hiding quantifier was developed by Luis Caires in [5,1], but a satisfac-
tory semantic treatment for the latter connective was not achieved before the
contributions of [11,2]. Andy Gordon was a coauthor with Luca Cardelli of
initial versions of spatial logics for the Ambient Calculus [10,11], which also
investigated connections with linear logic. The present paper contains the first
presentation of such a logic as a proper sequent calculus. Moreover, we now
target the logic towards a more standard m-calculus.

The first main difference between our logic and standard logics of concurrency
(e.g. [15]) is the presence in our case of a tensor operator that corresponds
to process composition. Usually, those other logics require formulas to denote
processes up to bisimulation, which is difficult to reconcile with a tensor oper-
ator that can make distinctions between bisimilar processes (however, such an
operator was anticipated by Dam [12]). In our case, we only require formulas to
denote processes up to structural equivalence, so that a tensor operator makes
easy sense. Sangiorgi, Hirshkoff and Lozes have shown, for a closely related
logic, that the equivalence induced by the logic is then essentially structural
equivalence [20,16]. Compositional proof systems for behavioral equivalences
on the 7-calculus have also been recently proposed by Dam [13].

The work of Gabbay and Pitts on the freshness quantifier [14] has become
central to our logic. The work of O’Hearn and Pym on Bunched Logics [17]
and of Reynolds on Separation Logic [19] is closely related to ours, at least in
intent. Spatial logics for trees and graphs have also been investigated in [9,7].



The style in which our logic is formalized is an extension of work by Alex
Simpson [21,22], and is also related, at least superficially, to labeled deductive
systems [24]. The use of formal transpositions, adopted here as a technique
for manipulating freshness constraints, turned out to be useful also in the set-
ting of programming languages for semi-structured data [8]. A decidable and
complete propositional fragment of a related logic has been recently investi-
gated [6].

Structure of the paper In Section 2 we recall the syntax and semantics
of our logic of Part I. In Section 3 we present the various ingredients that
constitute the proof system. In Section 3.1 we introduce the m-algebra that
is used in the constraints and indexes of our sequents. A m-algebra is an
abstraction of m-calculi, incorporating most of the characteristic properties
of composition and hiding. In Section 3.5 we introduce our sequent calculus,
which can be shown sound by an interpretation in the model of Part I [2]. In
Section 4 we show how recursive properties can be fully handled inside our
logic. In Section 5 we investigate proof theory, and in particular cut elimination
for the first-order fragment of our logic. In Section 6 we go through a set of
basic examples, to illustrate the expressive power of the logic. In the Appendix,
we collect proofs of results.

2 The Logic and its Semantics

In this section, we review the syntax and semantics of our spatial logic for
concurrency. Our intended model [4] is a fixed nominal process calculus (we use
asynchronous m-calculus) over a set of pure names A ; let P be the collection
of such processes. On P is defined the relation = of structural congruence,
that equates processes that possess the same spatial structure, and the binary
relation — of reduction, that captures the dynamic behavior of processes. A
property is a set of processes; a subset of P. Then, a formula of our logic
denotes a property, namely, it denotes the collection of processes satisfying
that formula.

Given the sets V and Z of name variables and propositional variables, re-
spectively, formulas are defined in Fig. 2. They include classical propositional
connectives, F, A, =, and the basic spatial operators: A|B (the tensor, rep-
resenting the parallel composition of processes), 0 (the unit of the tensor,
representing the collection of void processes), and A > B (the linear implica-
tion associated with the tensor). This last operator corresponds to context-
system specification of processes, which are the concurrency-theory equivalent
of pre/post conditions.

First-order quantification allows us to quantify over the set of pure names



mn,p ;= Name Terms (mn,pe N)

T Name variable (x €V)
(men)p Transposition term
A,B = Formulas (A, B € ®)
F False
(m&n)A Transposition
AANB Conjunction
A= B Implication
0 Void
A|B Composition
A>B Guarantee
n®A Revelation
noA Hiding
m(n) Message
QA Next
Vr.A First-order universal quantification
Nx.A Freshness quantification
X Propositional variable (X ed)
VX.A Second-order universal quantification

Fig. 2. Formulas

A of the m-calculus. Pure names (n,m,p € A) are represented in our logic
by name terms: a name variable x denotes some name, while a transposition
term (m<> n)p denotes the name obtained by applying the transposition of
the names denoted by the name terms m and n to the name denoted by the
name term p. The use of name terms in formulas and the presence of a explicit
transposition formula (m<> n)A are some convenient additions we introduce
here to the basic logic of [4,3] (cf., transposition types in [8]). We do not
allow pure names to appear in the syntax of formulas: only name variables
and their transpositions are used there. As discussed below, these additions
can be integrated in a fairly straightforward way into the semantic framework
already developed in [4].

Name hiding induces a pair of adjunct logical operators. The formula n® A



means that a hidden name, denoted by the name term n, exists in a restricted
scope that satisfies property A. It is matched by a m-calculus term (vn)u
provided that u satisfies A and n denotes the name n (see the semantic clause
for n® A in Fig. 3, inference rule for (®R) in Fig. 8, and the example in
Section 6.5; see [11,4] for further discussion.) The formula A @ n is the logical
adjunct of n® A, indicating that A can be satisfied by a process after hiding
the name denoted by n.

The notion of fresh name is introduced by a quantifier Nxz.A; a process P
satisfies Nx. A if P satisfies A for some name fresh in the process P and in
the formula Nz.A. Nx. A is defined along the lines of the freshness quantifier
of Gabbay-Pitts [14,18], and its semantics is designed to be compatible with
recursive formulas.

A logical operator n(m) allows us to assert that a process consists precisely
of a message m over a channel n, giving us some minimal power to observe
its behavior. A next-step temporal operator, Q0 A, allows us to talk about a
process after a single (unspecified) reduction step. Finally, we have a second-
order quantifier and related propositional variables.

In Vz.A, Nx.A (and VX.A), the variables = (and X) are bound with scope
the formula A. We assume defined on formulas the standard relation =, of
a-conversion (safe renaming of bound variables), but we never implicitly take
formulas “up to a-conversion”: our manipulation of variables via a-conversion
steps is always quite explicit. The set fu(A) of free name variables in A, and
the set fpu(A) of free propositional variables in A, are defined in the usual
way. Then, we define the set of logically free variables of a formula A by
Ifu(A)=fu(A) U fpu(A). If mis a name term and A is a formula then A{z<m}
denotes the formula obtained by replacing of all free occurrences of x in A by
the name term m, renaming bound name variables as needed to avoid capture
of name variables occurring in the name term m. We also define the set ft(A)
of free terms in A, to be the set of all maximal name terms in A that do not
contain occurrences of variables bound in A; and the set of logically free terms

of a formula A by Ift(A)=ft(A) U fpu(A).

We now review the semantics of our logic; if needed, further details can be
found in [4]. The denotation of formulas is defined in terms of sets of processes
that satisfy certain natural closure conditions. These conditions are motivated
by the following facts. First, we expect satisfaction to be closed under struc-
tural congruence (processes with the same spatial structure must satisfy the
same formulas). Second, a property should depend only on a finite set of rele-
vant names (related to the denotation of the free name variables of a formula);
such a set of names is called the support of the property. The collection of all
properties has the structure of a Boolean algebra under set inclusion, so we
naturally get propositional connectives in the logic. The collection of all prop-
erties has also the structure of a commutative quantale, due to the parallel



composition operator over processes; this induces the basic spatial connectives
of the logic. Other process operators induce further spatial connectives.

The support of a set of processes is defined using name transpositions. A
transposition {m<>n} acts on a process P by swapping all occurrences (free
and bound) of the names n and m in the process P. From [4], we recall

Definition 2.1 (PSet) A property set is a set of processes W such that

(1) For all Q, if P €V and P = Q then Q € V.
(2) There is a finite set of names N such that, for all n,m ¢ N, if P € ®
then P{n<sm} € ®.

We denote by P the set of all Psets. Every Pset ® € P has a least support [18,4],
that we denote by supp(®). Hence, in our semantics, the denotation of any
formula A is given by a Pset [A] € P. Since a formula A may contain free
occurrences of propositional and name variables, its denotation depends on
the denotation of such variables, which is given by a valuation. A valuation
v is a finite mapping assigning to each name variable in its domain a name
in A (the set of m-calculus pure names), and each propositional variable in its
domain a Pset in IP. The application of transpositions to Psets and valuations
is defined pointwise [4]. The following semantic characterization for the “free”
names of a formula A under a valuation [4] is also useful.

Definition 2.2 (Free Names under Valuation) If A is a formula, and v
a valuation for A, we define the set fn”(A) of free names of A under v by

' (A= {o(@) | = € fo(A)} U {supp(v(X)) | X € fpu(4)}

Intuitively, fn”(A) is basically fn(v(A)) except that we set fn(X)=supp(v(X))
for any X € fpu(A), hence fn"(A) = fn(A) for closed A. The set fn”(A) is
useful in the definition of the semantics of the fresh name quantifier, where the
quantification witness must be fresh with respect to the property set denoted
by a formula that in general may contain free occurrences of propositional
(and name) variables.

The semantics of formulas is defined in Fig. 3. The denotation mapping [—],
satisfies certain fundamental properties, listed in the next theorem.

Theorem 2.3 For all formulas A and valuations v

(1) [AL, € B with supp([A],) C " (4).

(2) For all transpositions 7, T([A],) = [A]+w)-

(3) Let M = fn'(Nx.A) U fu(P). If P € [Alvjzey) for some p & M, then
P € [Allvjweyp) for allp & M.

Proof. (1-2) By induction on the structure of the formula A; a straightforward
adaptation of the proof of Theorem 4.21 in [4]. (3) A consequence of (2). m



[z]v = v(z)
[(m< n)p], = {Im)y<>[n]o }Plo
[F. =

0
[(men)A], £ {[m]u[n], AL
[AAB], = [A],N[Bl.
[A= B], =2 {P|ifP c[A], then P € [B],}
[0]. 2 {P|P=0}
[A|B], £ (P | Ezists Q,R. P = Q|R and Q € [A], and R € [B],}
[A>B], £ {P|Forall Q. if Q € [A], then P|Q € [B],}
[n®A], = {P ] Ezists Q. P = (v[n],)Q and Q € [A],}
[Aon], = {P|(¥[n].)P € [A].}
[m{n)], = {P|P=[m],(n].)}
[Vz.A]y = MuealAloen)
Mz AL, 2 Upgpur o.ay [Alufzeny \ {P | 7 € f(P)})

[0A], 2 (P | Ezists Q. P — Q and Q € [A],}
[XxT. = v(X)
VXAl = Noer [Alxey

Fig. 3. Denotation of terms and formulas.

3 The Proof System

In this section, we present a sequent calculus based proof system for our
logic. The inference rules of our system follow the pattern one expects from a
Gentzen-style sequent calculus, that is, a system where there is a symmetric
pair of left and right introduction rules for each logical connective. As dis-
cussed in the introduction, sequents have the form (S)T'+ A | where (S) is
a finite set of constraints, and I, A are multisets of index-tagged formulas.
Indexes denote the worlds (the processes) of our modal logic. Such indexes are
elements of the term m-algebra.



3.1 m-algebras

We now introduce m-algebras, and constraint theories over the term 7-algebra.
A m-algebra is a sorted algebra, with a sort for names, a sort for processes,
and a sort for collections of processes (properties), and equipped with the
basic process operations of composition, name hiding and name transposition.
Hence, many process calculi are m-algebras, in particular the asynchronous
m-calculus A7 which is the intended model of our logic.

Definition 3.1 (w-algebra) A m-algebra is a structure
IT= <£773,C,07 |7V7 ((_))£7 (H)P7 (H)C>

such that L is a countable set of labels (¢), P is the set of processes (P, Q, R),
C is a collection of properties (F,G), and

0 (void) is a distinguished process in P

—|— (composition) is an operation P x P — P

(v—)— (name hiding, a.k.a. restriction) is an operation L x P — P

(— > —).— (transposition on labels) is an operation L x L x L — L

(— <> —)p— (transposition on processes) is an operation L x L x P — P
(— 4> —).— (transposition on properties) is an operation L x L x C — C

We refer to the £ part of a m-algebra II by I, and likewise for the remaining
components (e.g., [Ip). For example, the asynchronous m-calculus A7 is the
m-algebra where A7, is the set of m-calculus names, A7wp is the set of n-
calculus processes, and (m<>n)P denotes the process {m<>n}-P obtained by
swapping the names m,n in the process P.

Of particular interest to us is the term m-algebra, which supports the syntac-
tical manipulation of (schematic) processes and names in a general way.

Definition 3.2 (Term 7-algebra) Consider given a set V of names vari-
ables, a set Z of process variables, and a set X of propositional variables.
The term mw-algebra is the free m-algebra

P= <N;177707 |7V7(<_>)N7(<_>)IJ(H)}'>

where N is the set of all terms freely built from the variables in V and name
transposition, F is the set of all terms freely built from the variables in X and
name transposition, and L is the set of all terms freely built from the variables
in Z, name terms in N, and the process operations 0, |,v and ( <> );. In
the term m-algebra, the labels N are called name terms, the processes I are
called indexes, and the properties F are called propositional terms. We use

10



the meta-variables

z,y,2 €V (Name Variables) m,n,p € N (Name Terms)
x,7,z € Z (Process Variables) u,v,t €Z  (Indexes)
X,Y,Z € X (Propositional Variables) F,G, H € F (Propositional Terms)

v,0 EGEFUN ¢eTETUG

The elements of the term m-algebra that we have called inderes denote el-
ements of the intended process algebra (processes, the worlds of our modal
logic), while the name terms denote the pure names used in processes. For ex-
ample, z, (z<>y)z and (x> ((y<> 2)x))z are name terms, while x, (z<+>y)x
and x|(v(xz<>y)z)y are indexes. N.B., in the term m-algebra, (m<> n)P (re-
spectively, (m<> n)p) is a particular index (respectively, name term) in which
transposition is interpreted as a formal operation.

A propositional term F denotes a property (a collection of processes). The
intention is that the process denoted by the index u belongs to the property
denoted by (n<«>m)F whenever the process denoted by (n<« m)u belongs to
the property denoted by F'.

Definition 3.3 (Interpretation) Given any m-algebra I, an interpretation
J of the term m-algebra into Il is a triple of mappings J; : V — Iz and
JIp: Z—=1lp, Jo: X — 1.

Every interpretation J extends to the unique homomorphism J : P — II of
m-algebras in the standard way. Note that the term 7 algebra can be straight-
forwardly interpreted into any nominal calculi (e.g., the w-calculus, the ambi-
ent calculus), by mapping the (formal) operators of the term m-algebra into
the corresponding process model operators.

Definition 3.4 (Algebraic free variables) Given an indezx, name term, or
propositional term &, we denote by afu(§) its set of algebraic free (name, process
and property) variables, defined simply as the collection of all the variables in
V, Z and X occurring in such terms.

Remark 3.5 A variable z is algebraic free, in, e.g., the index (vz)0, while the
name 7 is not free in the usual sense in the 7-calculus process (vn)0. In partic-
ular, a w-substitution acts on all algebraic free variables of indexes and name
terms. E.g., if u=(vz)(x|y), then u{z—y}{x—(vz)z} = (vy)((vz)z|y).

Definition 3.6 (w-substitution) A w-substitution is an interpretation from
P into P.

Every m-substitution o extends to the homomorphism 6 : P — P of term
m-algebras that acts as a syntactic substitution on indexes. We denote by
{z<—n} the w-substitution that maps x into n and acts like the identity else-

11



where, and likewise for {x<+u} and {X<«+F}. If I is a mapping V — N then
we note by I {z<n} the mapping I’ such that I%(z)2I(z) for z # z and
I'.(z)=n. Likewise, if J is an interpretation, we write J{x<n}{x<u} for

the interpretation that behaves like J except that it maps  to n and x to u.

Usually, we write just o for the homomorphic extension ¢ of a m-substitution
0.

3.2  Constraint theories

The worlds of our logic relate to each other both by spatial and temporal con-
straints: spatial constraints express that the processes denoted by the equated
indexes have the same spatial structure (cf. m-calculus structural congruence),
while temporal constraints express that a process has a reduction to another
process (cf. m-calculus reduction). Intuitively, a constraint theory defines a
class of models for the spatial logic, namely those models that satisfy all of its
spatial and temporal constraints.

Definition 3.7 (Constraint and constraint theory) A constraint c is ei-
ther an index, name or property equation, a reduction, a name or property
apartness, defined by

m# F Property apartness (me N, F € F)

U —v Reduction

c = Constraints
u=v Index equation (u,v €T)
n=m Name equation (n,meN)
m#n Name apartness (m,ne N)
F=Gg Property equation (F,G € F)
(
(

u,v €1)

A constraint theory is a finite set of constraints.

An equation u = v states that the indexes u and v denote structurally con-
gruent processes, while a reduction v — v asserts that the process denoted by
the index u reduces to the process denoted by the index v.

In order to handle freshness constraints explicitly, we also introduce apartness
constraints: m# n meaning that the name terms m and n denote distinct
names, and m# F' meaning that the name term m denotes a name distinct
from any name in the (finite) support of the property (set of processes) denoted
by the propositional term F' (so the name n is fresh in such a property).

A constraint F' = G asserts that the propositional terms F' and G' denote the
same property.

12



(Basic)

{=eS=¢=s¢
THY €S> v#sY
u—vES=>u—gv

(Spatial)

(Basic Equ)
(Basic Apart)
(Basic Red)

u|0 =g u (Sp Void)

ulv =g v|u (Sp Par Comm)
(u|v)|t =5 ul(v]?) (Sp Par Assoc)
(rn)0 =5 0 (Sp Res Void)
(vn)(vn)u =5 (vn)u (Sp Res Res)
(vm)(vn)u =g (vn)(vm)u (Sp Res Comm)
() (u|(vn)v) =5 ((vn)u)|(vr)v (Sp Res Par)
(Congruence)

E=s¢ (Cong Refl)
{=s¢ =& =5¢ (Cong Sym)
§=s8,8 =5t = E=5¢" (Cong Trans)
u=gv=ult =g v|t (Cong Par)
u=gv,M=g n= (vmMu =g (vN)v (Cong Res)
m=g n,r=gq,y=gv = (M<r)y=s (neq)y (Cong Swap)
Y#sY T=sT,q=sq = (req)y#s (P d)y (Cong Apart)

Fig. 4. Closure of constraint theories (Basic, Spatial and Congruence).

Definition 3.8 (Closure of a constraint theory) Given a constraint the-
ory S, the relations

=g C I xZ Index Equality =g C F x F Property Equality
=5 C N x N Name Equality #¢ C N x F Property Apartness
#¢ C N x N Name Apartness —g € I xZ Index Reduction

are inductively defined by the set of closure rules in Figs. 4-5.

Closure rules axiomatize some basic structural properties of our intended
models. For instance, rules in (Spatial) characterize the basic properties of
structural congruence; in particular (Sp Res Par) expresses the usual name
extrusion property of m-calculus.

13



(Apartness)

m#tgy, n#gy = (Mo n)y =gy (Swap Fresh)
m#gn= n#gm (Apart Sym)
Y#s0,7=57,0 =50 =" #50 (Cong Apr)
(Transposition)

(n>m)0 =50 Swap Void)

(nem)(ulv) =s (e Mu|(ne m)v Swap Par)

(nem)(vp)u =5 (v(ne m)p)(ne m)u Swap Res)

(nem)(nem)é =g € Swap Inv)

(nen)é =g & Swap 1d)

(men)m=gn

(

(

(
(nem)(perq)y =s ((ne> m)p<+ (nem)q) (n<m)y (Swap Swap)

(

(

(Swap App)

(

u =g (vn)t,u =g (vM)v = (N Mu =g u Swap Erase)

(Reduction)

u—gt,v =g u,t=gw=0v—g5 W (Red Cong)
u—gt=ulv =gt (Red Par)
u—gt= (vnu —g (vt (Red Res)
u—gt = (Nnem)u —g (N m)t (Red Transp)

Fig. 5. Closure of constraint theories (Apartness, Transposition and Reduction).

Remark 3.9 Let u be the index (vz)x |(vz)z and v the index (vz)(x |(vz)z).
Let I be any interpretation into Am, we then have I(u) = (vn)P|(vn)Q, for
some processes P and ) and name n. Since name n is not free in the pro-
cess (rn)@ (in the usual m-calculus sense), by the scope extrusion axiom of
structural congruence we have (vn)P|(vn)Q = (vn)(P|(vn)Q) = I(v). This
shows the soundness of the (Sp Res Par) axiom with respect to our intended
interpretation.

Rules in (Transposition) and (Apartness) express the action of transpositions
on indexes and name terms. The notation 77 is used to represent the ap-
plication of the transposition 7 to some (index or name term) 7, and py to
represent the application of an arbitrary sequence of transpositions (that is,
a permutation) to the element 7. For example, (Swap Erase) expresses that
transposition of names which are not free in a process act as the identity:
in fact, if u =g (vn)t holds then n denotes a name which is not free in the
process denoted by the name term u. We write S F n# m to denote that
n#¢m, and likewise for the other kinds of constraints. We have the following

14



basic properties

Lemma 3.10 For all constraint theories S and S’, for all constraints ¢ and
c, for all w-substitutions o, we have

(1) St ¢ implies SUS' F c.
(2) If Sk c and S,ct c then S+ ¢.
(3) If S+ ¢ then o(S) F o(c).

In the remainder of this section, we present some basic concepts related to
the semantics of constraint theories. An interpretation for a constraint theory
assigns an appropriate denotation to all propositional, process and name vari-
ables occurring on it. As in Part I, we are interested on a version of the spatial
logic for the asynchronous 7-calculus (we use the standard notations = and —
for asynchronous 7m-calculus structural congruence and reduction). Therefore,
interpretations that concern us here map process variables into A7 processes,
name variables into Aw names, and propositional variables into property sets.

For convenience, we present Aw as a m-algebra
A7T - <A7P7P707 |7V7 (H)AJ (H)P7 (<_>)]P’>
where A is the set of pure names, P is the set of processes, and P is the

collection of all Psets (Definition 2.1). We now define

Definition 3.11 (An-interpretation) A Am-interpretation J is an inter-
pretation of the term m-algebra into Ar.

As noticed above, we can then see that an Am-interpretation J contains a
valuation, so that it also makes sense to write [A] s for the denotation of the
formula A under the valuation determined by 7. Also, for a name term n, we
can verify that J(n) = [n].

Definition 3.12 (Satisfaction and Validity) The relation of satisfaction
between an Am-interpretation J and constraints is defined thus:

1.J satm=n<& [Mly=[nly 4 Jsatm#n < [mM]y#[ns

2.T satu=v & Ju)=Jw) 5 JsatF=G<& [F]s=[G]s

3. T satu—v & J(u) - JWw) 6T satn#F < [N & supp([F]a)
J satisfies the constraint theory S if J satisfies all constraints in S. A con-
straint S = c is valid if every interpretation that satisfies S also satisfies c.

The following lemma establishes the soundness of the closure of constraint
theories.

Lemma 3.13 (Soundness) Let S be a constraint theory and J a Am-inter-
pretation that satisfies S. For all name terms m and n, for all indexes v and
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t, and for all propositional terms F and G, we have:

1. If m=gnthen [M]sy =[n)y 4. If m#gn then [M]s # [n]s
2. If u=g t then J(u) = J(t) 5. If F =g G then J(F) = J(G)
3. If u =gt then J(u) — J(t) 6. If m#g F then [M]] s & supp([F]7)

Proof. By induction on the derivations of v =g 7/, n#¢m, m#¢ F, and u —¢
v using well-known properties of structural congruence, name transposition
and reduction of the asynchronous m-calculus. [

3.3  Sequents

Having introduced indexes and constraint theories, we can now define the
sequents of our logic. First, a context is a finite multiset of indexed formulas
of the form u : A where u is an index (Definition 3.2) and A is a formula. We
use A, I' to denote contexts. Then

Definition 3.14 (Sequent) A sequent is a judgment of the form (S)T' +~ A
where S is a constraint theory, and A and I' are contexts.

As usual, the right context A is interpreted as the disjunction of its formu-
las, the left context I is interpreted as the conjunction of the formulas in it.
Defining contexts as multisets allows for the implicit use of exchange (but
not contraction!) in proofs. We write A =, A’ if A’ is obtained from A by
a-converting some formulas in it.

Definition 3.15 (Variables in sequents) The set of free (name, process,
and propositional) variables of a context A is given by

Ifo(A)E | J{afo(u) U lfu(A) | u: A € A}

The set of free (name, process, and propositional) variables in a sequent (S) T+
A is given by
fol{S) T = A)=afo(S) U fo(T) U fo(A)

N.B.: name variables x occur both in constraints and in formulas A; process
variables x occur only in indexes; propositional variables X also may occur in
formulas and constraints. Given a Am-interpretation 7 and a context I', we
say that J satisfies all of T if J(u) € [A] 7 for all u : A € T'. Likewise, we say
that J satisfies some of I if J(u) € [A] s for some u : A € T'. Hence we have

Definition 3.16 (Valid Sequent) A sequent (S)I' — A is valid if for all
interpretations J such that J satisfies S, and J satisfies all of I', then J
satisfies some of A.
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A =g A ifA=, A
(n-m)0o =50
(n&m)F =5 F
(nem)(AANB) =g (n&mAA (n&m)B
(n&m)(A = B) =5 (n&>mA = (n>m)B
(nem)(A|B) =5 (nem)A|(ne>m)B
(nem)(A> B) =g (nem)Av (n>m)B
(ne>m)QA =5 O0(n>m)A
(nem)(Uz.A) =5 Nz.(nem)(A{z—(nem)z}) if z & fu(m) U fu(n)
(nem)(Vr.A) =g Vo.(nem)(A{z—(nem)z}) if z & fu(m) U fu(n)
(nem)(VX.A) =g VX.(neom)A{ X+ (nem) X}
(nem)(p®4) =s (nemp) @ (nem)A
(nem(Aop) =5 (nemA((nsm)p)
(p

(nem)(plg))  =s (nem)p)((nem)qg)

n®A =s m®A ifn=¢gm

Aon = Aom fn=¢gm

n(my) =s p(q) if m=g pand n=g q
F =5 G ifF =g G

Fig. 6. Formula Equivalence.

For example, if A and B are closed formulas, the sequent () x : A+ x : B is
valid if and only if every process that satisfies the formula A also satisfies the
formula B.

3.4 Assertions

An assertion A =g B states that, under any interpretation that satisfies all
constraints in S, the formulas A and B denote the same property.

Definition 3.17 (Equational equivalence of formulas) FEquational equiv-
alence of formulas, written =g, s the least congruence relation on formulas
inductively defined in Figure 6.

We call a formula normalized if all occurrences of transpositions occur at the
term level (so it contains no subformula of the form (n+« m)A). In general,
given a constraint theory S, any formula A can be converted into a semanti-
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cally equivalent but normalized formula A’, using the equations in Figure 6 as
left-to-right rewrite rules. We then define

Definition 3.18 (Normalized) We assert A ||s B whenever A =g B and
B is normalized.

Note that if A |ls B and A s B', we must have B {lg¢ B’. We also use the
notation I" {l¢ I'" to denote that the sequent context I'' results from normalizing
the sequent context I' under the constraints S. Thus, we also call a sequent
or sequent context normalized whenever all formulas in it are normalized.
Moreover

Lemma 3.19 For all formulas A, B and constraint theory S we have

(1) For every m-substitution o, if A =g B then 0(A) =,s) 0(B).
(2) If A =g B then there is A" such that A s A" and B g A'.
(3) If A=s B and A s A’ for formula some A’, then also B g A'.

Proof. (1-3) Induction on the derivation of A =g B. m
An assertion n#g¢ A states that, under any interpretation that satisfies all

constraints in S, the name denoted by the name term n is fresh in the
property denoted by the formula A. More precisely, given a formula A with

Ift(A) = {my,...,my}, and a constraint theory S, we write n#g¢ A as an
abbreviation for the set (understood as the conjunction) containing the con-
straints n#q my, ... ,n#g my. N.B.: each my is either a name term or a propo-

sitional variable. The following facts are important:

Lemma 3.20 For all normalized formulas A and name terms p, q,

(1) Let p#4 A and q#4 A. Then (p+q)A s A.
(2) Let p#H Wz A and q# 4 Vx.A. Then (p<> q)A{xz<p} s A{z<q}.

Proof. Follows from Lemma 8.2 in appendix. m

We can verify that the relations =g (between formulas), and #g (between
name terms and formulas) defined above are sound with respect to their in-
tended interpretations.

Lemma 3.21 (Soundness) Let J be a Am-interpretation. For all formulas
A, B and name terms n,

(1) If J satisfies S and A =g B then [A] 7 = [B] 7.
(2) If J satisfies S and n#tg A then [n] s € fn? (A).
(3) If J satisfies S and n#q A then [Nz & supp([A] 7).

Proof. (1) Induction on the derivation of A =g B. (2) By Lemma 3.13. (3) By
(2) and Theorem 2.3(1). ]
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[A is an atomic formula | (Y Tru:A A ()T u: Ar A

S Tu:Avu:Aa 1) S)Tr A (Cut)
(YT u:Au: Ar A (S)Twu:Au: A A
S Tu Ara  (CH) S Tru An  (CR)
(nem)A=g A (nem)A =g A
(S)T,u' : A+ A (men)u =g o (TL) (S Tru': A'VA (Mo n)u =g o (TR)
()T u: A A (S Tu:AA
(SYT'r- A
S Tu Fra FV TS
(Y Tr-u:AA
(SYT,u:Au:Br A ($)Tw~u:B,A
(S)T,u: ANBw A (AL) (S)Fl—u:A/\B,A(AR)
(YTru:AA (SYT,u: B+ A (SYT,u:Awu:B,A
S\ T,u:A= Br A L Srewas6a O

Fig. 7. Structural and Propositional Rules.

3.5 Inference Rules

We now present the set of inference rules of our base proof system S. Infer-
ence rules may have for premises not just sequents but also assertions over
the closure of the constraint theory S that appears in the conclusion. Such
assertions are of the form u =g v (mostly in the rules for spatial connectives),
A =g B (in (TL) and (TR) rules), u —g v (in the temporal rules) or n#g¢ A
(in the freshness rules).

The rules in the identity, structural and propositional group (see Figures 7)
follow the standard format. We use the simplest possible form for the (Id)
axiom, where the formula A is required to be atomic. Recall that in general
a formula is called atomic if it is not built from a logical connective at the
top level, in our case, if it is either a propositional variable X or a message
n{m). This is without loss of generality, since the general form of (Id) where
the identified formula can be an arbitrary one is admissible (Lemma 5.5). We
include explicit contraction rules (CL) and (CR); weakening is admissible, and
exchange may be dealt with implicitly, since sequent contexts are multisets.

The transposition rules (TL) and (TR) capture the property of invariance
of the semantics under transposition of names (Theorem 2.3). They also in-
corporate the theory of equality of indexes and names terms defined by the
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(S,t=0)T'~ A
()T, t: 0 A

(OL)

[x and v not free in the conclusion)

(SSu=x|7)Tx: A,y : B A

(S)T,u:AlBr A (I

($YT=t: AA (S)Ttlu: B A >
(SYT,u: A>Br A

[x not free in the conclusion]
(S,u=wnx)T,x: Ar A
(Tu:n@Ar A

(®L)

(YT, t: A A t =g (vn)u
()T ,u: Aonw A

(@L)

u=g0
(YT ~wu:0,A

(OR)

(Y Trv:AA
(SYT'—1:B,A u=gwvl|t

(S)T'+~u: A|B,A (IR)

[x not free in the conclusion]

()T, x : Arv:B,A v=gx|u

(SYTru:A A t=g (vn)u

(S)T~wu:A>B,A (R)

(SYTru:AA u=g (vn)t

(Y T-t:n®A,A (®R)

STt dona OB

Fig. 8. Spatial Rules.

[x not free in the conclusion]

(S;u—=x)Cx : A A

(Y Trwv:A A u—gv

OTa oirad Y @ Tra.ona OB
Fig. 9. Temporal Rules.
(S,c# N,u= (vx)x) '+ A
(SHYT' A (V)
u =g (vn)v u =g (vn)v
n#q Nz A n#qNe. A
(YT, u: A{z<n}r+ A (YT~ u: A{z+n}, A (MR)

(S)T,u: Nz A A (ML)

(S)Twru: Nz A A

Fig. 10. Freshness Rules
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constraint closure (Definition 3.8) into the proof system, in particular ax-
iomatizing the principle of substitution of equals for equals of name terms
in formulas. Note that, in these rules, indexes are identified up to =g, while
formulas are identified up to =g. As we shall discuss in Section 5.2, explicit
transpositions and the transpositions rule also play a crucial role in obtaining
cut-elimination for the freshness quantifier.

[y not free in the conclusion)

(S)T,u: A{z+n}r A (VL) (S)T - u: A{zy} A (VR)
()T u:Vr.Ar A ()T~ wu:Vz.A A
Y not free in the conclusion]
(S)I‘,u:A{X(—B}n—A( o (S)Tr-u: A{X<Y} A R
()T u:VX. A A (S)T'—u:VX.A A

Fig. 11. Quantifier Rules.

(S,u=0)T+— A wulv=50 (SSu=0)T~A (vnu=50

ST A (510) ST A (5v0)
[x and > not free in the conclusion]
(S,u=x|r,wn)x =t,(vn)y =)' A (vn)u =g tlv (Sv))
(S\Tr A g
[x,x",9 and y' not free in the conclusion]
(S;u=xlx";w=o|yt=x|r,o=x"|9) T+ A u|w=gtlv sl
(SYT'r A
[x not free in the conclusion]
(S;u=(nem)o) e A
(S,u=(rm)x,v=wn)x)I'- A (vnju =g (vm)v
(Svv)
(SYT' A
[x not free in the conclusion]
0 —gu (S;u— x,v=(vn)x) ' A (vn)u »gsv
S Tra 507 ST A (S =)

Fig. 12. World Rules.

In the rules for propositional connectives, indexes keep track of the processes
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for which the formulas are asserted to hold, but do not interfere in any way
with the constraint part of sequents. This is not the case in rules for the spatial
connectives (Figure 8), that and make essential use of the constraint theories
in sequents. Note that the left rules, when read bottom-up, introduce spatial
constraints into the constraint theories, and the respective right rules, when
read top-down, check corresponding constraints. While spatial rules rely on
spatial constraints, temporal rules (Figure 9) rely on reduction constraints.

The rules for first and second order quantifiers have the expected form (Fig-
ure 11). We then introduce the rules for freshness (Figure 10). Rule (M) as-
serts, when read bottom-up, that there is always a name (denoted by) x that
is fresh with respect to the free names of (the process denoted by) the index
u, and that is also fresh with respect to a set of names (denoted by the name
and propositional variables in) N. Hence, rule (M) corresponds to the (Fresh)
axiom of Pitts’ Nominal Logic [18].

The rules (ML/R) for the fresh quantifier do not show the symmetry one
might expect of a left / right rule pair. This fact relates to the existential /
universal ambivalence of freshness quantification (the Gabbay-Pitts property):
note that (ML) follows the pattern of (VL), while (MR) follows the pattern of
(3R). Then, (M) embodies the introduction of fresh witnesses usually present
in both (VR) and (3L). Both (ML) and (MR) include a premise of the form
n#gq Wz A, asserting that the name term n must denote a name distinct from
all free names in the support of the property denoted by formula A. Moreover,
in the rules for Mx.A, in addition to the freshness condition n#gWz.A, the
assumption u =g (rn)v ensures that n denotes a name that does not occur
free in the process denoted by u, cf. the semantics of Nx.A.

Finally, world rules (Figure 12) axiomatize certain deep (extra-logical) prop-
erties of the worlds. Moreover, the properties captured by the proposed set
of world rules (inversion principles for structural congruence and for process
reduction) are expected to hold in any natural variation of the m-calculus.
It is important to note that none of the studied proof-theoretic properties of
our logic (e.g., cut-elimination) depend on the chosen set of world rules. This
means that the proof system is completely open to the addition of further
world rules, provided their soundness is granted, that they do not change log-
ical contexts of sequents (I" and A), and that they just check or eliminate
constraints from the constraint part of sequents.

We assert = (S) "~ A to state that the sequent (S)T'+~ A has a derivation.
We now state soundness of our system with respect to the intended model.

Theorem 3.22 (Soundness) All sequents derivable in S are valid in Ar.

Proof. See appendix. n
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-A =A=F (Negation)

T L F (True)

AVB £ -A= B (Disjunction)

A|B £ —(~A|-B) (Decomposition)

©n 2 -n®T (Free name)

OA £ 0-A (A1l next)

~A 2 AbF (Inconsistency)

1A LA (Validity)

A B2 (A= B) (Entailment)

Ir.A £ -Vz.~A  (First-order existential quantification)
IX.A 2 -WX-A (Second-order existential quantification)
Hz.A 2 Nzz® A (Hidden name quantification)

Fig. 13. Derived Connectives.

3.6 Derived Connectives and Inference Rules

Before closing the section, we introduce some useful derived connectives (see
Figure 13). These include the usual operations of the classical predicate cal-
culus, namely —A (Negation), 3x.A (Existential quantification), AV B (Dis-
junction) and T (True), with the expected meaning. Decomposition A||B is
the DeMorgan dual of composition A|B. For instance, a process satisfies 0|0
if it is single-threaded (or void). We also have the standard temporal modality
4, the dual of {. The free name predicate (¢)nt holds of any process with some
free occurrence of the name (denoted by the name term) n. Inconsistency ~ A
expresses internally to the logic that A is false of every process and wvalidity ! A
that A holds of every process [10]. Thus, entailment A = B internalizes the
consequence relation induced by the logic. The hidden name quantifier is de-
fined as in [2]. For these connectives the inference rules presented in Figures 14
and 15 can easily be shown to be admissible.

4 Inductive and Coinductive Definitions

In this section, we present our treatment of recursive formulas. First, as shown
in Section 3.6 we can combine the spatial operator > with classical negation to
obtain an operator !A=(A = F) > F that has the meaning that A is valid (is
satisfied by any process). !A is an example of a classical formula [10]: the truth
value of classical formulas does not depend on the particular world (process)
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(YT A

GRS T S Tru: T,a (TR)
(S)T,u: Av A

L L= L S
() T'ru: A A (-L) ($)T,u: Av A ~R)

()T u:-Ax A (S)Tru:—-AA

[x and v not free in the conclusion)

(S)T,v: Ax A
(S)T,t: B A u=gv|t . (S;u=xly)T+x: Ay :BA R
(S)T,u:A|Br A (L) ()T ~u: A|B,A (%)
[x not free in the conclusion]
u=g (vn)v (©L) (S;u=(rnx)I'r A (©R)
(SYT,u: ©On+ A (SYT'ru:©n A
[X not free in the conclusion)
. Ssu—x)'-x:AA
(YT, v: A A u—gwv @) ( ) (OR)

(SYTyu:O0A A (YT :0A A

Fig. 14. Inference Rules for derived connectives.

at which they are evaluated. Then, the formula

A= B£1(A= B)

means that the denotation of formula A is contained in the denotation of
formula B. Now, given a formula A with a free propositional variable X,
we say that A is monotonic in X if the mapping that assigns [Af,x«w) to

every property ¥ is monotonic. Writing A as A{X} and A{X<«+B} as A{B},

through second-order quantification we can express inside the logic that A is

monotonic in X as follows:

A{XT} 2 0:VXVY.(X =2 Y) = (A{X} = A{Y))

We may check that A{X ™"} is valid if and only if A is monotonic in X (note
that A{X*} is an indexed formula, where the index is 0).We then define least

and greatest fixpoint operators in a style similar to F-algebraic encodings.
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[x not free in the conclusion]

(S)F,U:Al—A(|L) (S)T—x:AA
()T u:lArA (S)Tu:lA A

('R)

[x not free in the conclusion]

(S)Trv: A A (S)F,U:BI—A(':> ) (S)Ix:Avx:B,A (oR)
(S)Ty,u: A= Brv A (S)T~u:A= B,A
[z not free in the conclusion] (S)T v u: A{zen}, A
(;’;S’I)‘F’UE]A; AA (3L) (YT~ w:3dx. A A (3R)
yu:dr.Av
[X not free in the conclusion) (S)T+ u: A{X+B},A
: FL ' — (3
<S<>SF> F’“H-;‘Z AA EL) GIETE W
yu X Av
[x not free in the conclusion]
n#qHz. A n#q¢Hz.A u=g (vn)v
(S;u=(vn)x)T,x : A{z+<n}r A (HL) (S)T'w—wv: A{zen}, A (HR)
()T u:Hz. A A (YT wu:HzAA

Fig. 15. Inference Rules for derived connectives.

pYA(YYEW.(AY} =2 Y)=Y oY A{Y} £ -uX-A{X}

These definitions turn out to enjoy the expected properties of recursive formu-
las, in the form of the derivable left and right rules in Figure 16. For example,
the derivable rule (vR) corresponds to a coinduction principle. The folding
and unfolding principles for pX.A and v X.A can also be derived, by making
an essential use of monotonicity assumptions. We show in detail the case for
folding the least fixpoint operator, using the abbreviation FéuX.A{X} to
make the proof more readable.

(S)T, A{X+} - u: A{pX.A{X}} & pX.A{X},A (Fold)
5.(S)T, A{X*),x : A{F},x : A{X} = X,x : A{F} = A{X} v~ x : X,A (by Id)
4.(S)T, A{X*},x : A{F},x : A{X} > X,x : F> X+ x : X,A (by 5, (MonL))
3.(S)T, A{X*t),x : A{F},x : A{X}) = X+ x : X,A (by 4, (uFixL))
2.(S)T, A{X*},x : A{F} v x : F,A (by 3, (V2R), (IR), (=R)
L(S)T, A{X*} - u: A{F} = F,A (by 2, (IR), (=R))
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(S)T, A{X*+},u: A{B} = A{C}+ A

ST AX Tu Bs Or A (Moub)
()T, A{XT}~u:Be C A
ST, A(X o u: A{B} = A{C],A MouR)
[X is not free in the conclusion)
(YTu: Xju: X = A{X} A
(vL)

(YT u:vX.Ar A

[x is not free in the conclusion)
(S)T,x : B~ x : A{X<B},A (S)I'+~wu:B,A

(T u:vX.AAN (vR)

[X is not free in the conclusion]
(Y T,u: A{X} e Xr+u: X,A

(YT u:puX.A A (hR)

[x is not free in the conclusion]
()T, x : A{B}+x:B,A (S)T',u: B+ A
()T u: pX. A A

(kL)

(S)T,u: uX.A{X} &= B+ A (S)T'~wu: A{B} = B,A

(S)T,u: A{B} = B+ A (pFixL) (YT u: pX.A{X} & B,A (uFixR)

Fig. 16. Derived rules for the fixpoint operators.

In section 6.6 we give further examples illustrating the use of recursion.

5 Basic Proof Theory

In this section we develop some proof-theory for our logic, stating several
admissible proof principles and a cut elimination result for the first-order
fragment.

5.1 Admissible Rules

Most of the presented proof principles are size-preserving, and instrumental to
the proof of cut elimination. We introduce a measure for the size of a deriva-
tion, in which certain occurrences of the (TL/TR) rules are not weighted. We
will show below that any derivation can be transformed into a derivation for
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the same sequent where all occurrences of the (TL/TR) rules are simple.

Definition 5.1 (Simple occurrence) In a derivation, an occurrence of a
(TL/TR) inference rule is simple if it applies either to an instance of (1d), or
to another simple occurrence of a (TL/TR) inference rule.

Definition 5.2 (Size of a derivation) The size of a derivation is the num-
ber of rule occurrences it contains, other than simple occurrences of (TL/TR)
inference rules.

We then assert -, (S)T'+ A to state that the given sequent has a derivation
of size not exceeding n. We have the following useful admissible rules

Lemma 5.3 (Basic Admissible Rules) The following size-preserving proof
principles are admissible:

[, €EVUXUZ, ¢ not free in premise ] [T =T and A =, A" ]
Fo (S)T+ A Fo (S)T+ A ()
Fn (S{p@'}) T{pe¢'} = Afpy'} o (S DT e A

(Ren)

Fn (S)I'= A Fn (S,0)T A Skec

Fn (S{z+m}) {z<m} — A{z+<m} (InA') Frn (S)T— A (CS)
Fu (S)T = A Fn (S)T - A
Frn (S{x<+u}) T{x<+u} — A{x+u} (InZ) Frn (S, 90,17+ A A W)
Proof. See appendix. n

Lemma 5.4 (Replacement and Instantiation) The inference rules pre-
sented below are admissible

[ x not free in S | [ X not free in the conclusion |
(SYx :Arx:B (S)x :Brx:A ()T A
(SYo : C[A] o : C[B] (Rep) — o T xX AT AX AT

(In2)

Proof. (Rep) By induction on the structure of the context C[—|. (In2) By
induction on the derivation. m

Our primitive (Id) axiom is restricted to atomic formulas, however we have
the following standard property for unrestricted formulas.

Lemma 5.5 Every sequent of the form (S)T,u: Av u: A, A, where A in
not atomic, has a cut- and contraction-free derivation.

Proof. See appendix. n
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We now introduce the following useful variants of the (TL) and (TR) rules.

(nem)A g A (nem)A g A’
(SYT)u': A~ A (men)u =g v (YT o' : AA (men)u =g o
(SYTou:Ar A (SL) S Treu:AA (SR)

Definition 5.6 S1 is the proof system obtained from the base proof system S
by replacing rules (TL) and (TR) with the rules (SL) and (SR).

It is easy to see that if a sequent is derivable in S1 then it is also derivable in
the base system since A =g B whenever A s B. In fact, every S1 derivation
can be seen as a derivation in the base system just by interpreting (SR) and
(SL) as (TR) and (TL) respectively. Conversely, if a sequent is derivable in
the base system, it is also derivable in S1 since any instance of (TL) or (TR)
can be emulated using Cut, (SL) and (SR). Like with S derivations we call
simple to any S1 derivation in which all instances of (SL) and (SR) inference
rules are simple (c¢f., Definition 5.1). Hence, according to Definition 5.2, in a
simple S1 derivation no occurrence of the (SL) and (SR) rule is weighted.

Remark 5.7 The main difference between the system S and the system S1,
is that all formulas occurring in a cut-free S1 proof of a normalized sequent
are normalized (Definition 3.18). Moreover, as the following Lemma shows,
every S or S1 proof of a normalized sequent can be transformed into a S1
proof of the same sequent in which all formulas are normalized.

Lemma 5.8 (Simplification) Assume (n< m)u =g v’ and (n< m)A {s
A, T s IV and A g A'. Then the following size-preserving proof principles
are admissible:

(1) IfF, (S)T,u: A~ A in S then =, (S)I",u' : A"+ A’ in S1.
(2) If b, (S)Tw—wu: A/ AinS then t, (S)I"v+ ' : A, A" in S1.

The resulting derivations in S1 are simple and normalized. Moreover, if the
original derivations in S are cut-free the resulting ones in S1 are also cut-free.

Proof. See appendix. n

A useful special case of Lemma 5.8 is the following fact.

Lemma 5.9 Assume I' {g I" and A s A" If b, (S)T +~ A in S then
Fn (S) T+ A in S1.

Proof. By Lemma 5.8(2): let u : A = 0 : F and note that if -, (S)IT" ~ O :
F, A’ then F, (S) "+ A’ ]
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(SYT~wv:Au:A|B,A (S)T,u: A>Brt: A A
(SYT'~1t:B,u: A|B,A u=guvlt (S)T,u:A>B,tlu: B A

(S)T'~wu: A|B,A (IRK) (S)T,u: A>Br A (>LK)
u=g (vn)t
(Y Tr-t: Au:n®AA
(Y Tru:n®A,A (®RK)

(SYT'-t:Aju: QA A u—gt ()T u:Vr.A,u: A{z<m}+— A

() Twu:0AA (ORK) ()T u:Vr.Ar A (VLK)

u=g (vn)v n#sNz.A u=g (vnjv n#sNz.A

(S)T'vwu: Nz Au: A{zn}, A (UR) (S)T,u: Nz A,u: A{z<—n}r A (ML)

(YT~ wu:Nz.A A (YT u: Nz, A A

Fig. 17. Rules of the contraction-free system CF.

5.2  Cut Elimination

Our aim is now to prove the cut-elimination property for the first-order frag-
ment of our logic. First, we introduce an alternative proof system CF. The
system CF has no primitive contraction rules, but admits an admissible size-
preserving contraction principle that plays an important role in the base case
of the Cut Lemma 5.17 below. Then, we show that there are transformations
between derivations in CF, S1, and S, such that the cut-elimination property
for CF implies the cut-elimination property for S. From now on, we restrict
to the first-order fragment of our logic.

Definition 5.10 CF is the proof system obtained from the system S1 by re-
moving the contraction rules (CL) and (CR), and replacing the rules (VL),
(|R), (>L), (ML), (UR), (®R), and (OR) by the rules shown in Figure 17.

The CF rules are identical to the corresponding ones in system S, except in
that they embed a contraction step (cf. the system G3c in [23]), that is, the
principal formula is copied in the premise. The replaced rules are precisely the
non-invertible ones. Note that in sequent calculus presentations of classical
logic (e.g., Gentzen's LK) (VL) is not invertible, and in classical linear logic
(®R) is not invertible (¢f., (|R)) and (—oL) is not invertible (cf. (>)).

Note that any derivation in CF can be immediately transformed into a deriva-
tion in the basic system, since each CF rule that does not belong to the system
S1 can be easily simulated by the corresponding rule followed by contraction.

29



Lemma 5.11 If a sequent has a derivation in the system CF, it has a deriva-
tion in the system S1. Moreover, if the original derivation is cut-free, so is
the resulting one.

Moreover, since the proof transformations given in Lemmas 5.3 and 5.8 are
completely structure-preserving, we can also verify that

Lemma 5.12 (Admissible Rules for the CF system) The proof princi-
ples in Lemma 5.3 and Lemma 5.8 hold exactly as stated for the CF system.

Lemma 5.13 (Inversion) The following size-preserving proof principles are
admissible in the system CF, provided the sequents shown are normalized.

(1) If =, (S)T,u: ANBw A thent, (S)T,u: Aju: B A.
(2) Ifl— (SYT'—u: AN B,A then

Fo (YT =w: AJA and H, (S)T'+ u: B, A.
(3) ]fl—n(S>F|—u.A:>B,Athen(S>F,u:A|—u:B,A.
(4) ]fl— (S)T,u: A= Bvw A then

Fo (S)T,u: B A and b, (S)T'~u: A A.
(5) Ifl— ()T v+ u:Vr.A, A then

Fn (S)T - u: A{z<vy}, A, for any fresh y.
(6) ]fl— (SYT'+~u: A> B, A then

Fo (S)T,x : Av X |u: B, A, for any fresh x .

(5

(7) Ifl— YT, u: A|Bw A then

Fo (Ssu=x|9)T,x : Ao : B A, for any fresh x,o .
(8) If =, (S)T,u: n®Aw A then

Fn (S,u = (vn)x)T,x : A, A, for any fresh x .
(9) If =, (S)T,u: 0 A then b, (S,u=0)T+ A.

The resulting derivations are normalized. Moreover, if the original derivations
are cut-free, so are the resulting derivations; if the original derivations are
stmple, so are the resulting derivations.

Proof. See appendix. [
Lemma 5.14 (Contraction Elimination) The size-preserving proof prin-

ciples given below are admissible in the system CF, provided the sequents
shown are normalized:

Fo (YT -u:Aju: A A
Fn ()T u: A A

Fo (YT u:Aju: A A
Fo ()T u: A A

(CR) (CL)

The resulting derivations are normalized. Moreover, if the original derivations
are cut-free, so are the resulting derivations; if the original derivations are
stmple, so are the resulting derivations.

Proof. See appendix. n

We can now state:
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Proposition 5.15 If a normalized sequent is derivable in S1 then it is deriv-
able in CF. The resulting derivation is normalized. Moreover, if the original
derivation 1s simple, so is the resulting one.

Proof. By induction on the structure of the original derivation, we construct a
CF derivation by replacing every occurrence of (VL), (|R), (>L), (ML), (UR),
(®R), and (OR) by the corresponding CF rule, after adding the extra required
formula in the premise using (W), and removing every occurrence of (CL) and
(CR) using Lemma 5.14. m

We are now in a position to show that the first-order fragment of the spatial
logic enjoys the cut elimination property. This result is reasonable evidence
that our addition of structural and freshness constraints to sequents and in-
ference rules is rather canonical. For instance, cuts on spatial formulas are
eliminated quite uniformly, by matching fresh process variables (on one side)
against the given witnesses (on the other), and then eliminating the remain-
ing redundant structural constraints. The cut elimination case for freshness
quantifications deserves a more detailed discussion. Consider the following cut

()T ~wu: A{z<n},A (S)T,u: A{lzm}ru: A
(YT ~wu: Nz A A ()T u: Nx. A A
(S)I'- A

To eliminate this we need to cut u : A{x<+—n} against u : A{z<—m}, while pre-
serving the sequent contexts [, A untouched. In general m and n are different
name terms denoting distinct names (we could even have m#g n provably).
In fact, soundness of this cut follows from the fact that a fresh name is (in
the sense of equivariance in Nominal Logic) indistinguishable from any other
fresh name. In proof-theoretic terms, the equivariance property has as con-
sequence that, in the apartness conditions made explicit by the premises of
such a cut, we can actually transform (using Lemma 5.8) the derivation of
()T ~ v : A{x<—m}, A into a derivation of (S)I' ~ u : A{x<n}, A. For
this transformation to go through the use of formal transpositions seems to
be essential both in the m-algebra and in the syntax of formulas and terms.

Definition 5.16 (Single-cut derivation) A single-cut derivation is a deriva-
tion with a single instance of the (Cut) rule, occurring at its root.

Lemma 5.17 (Cut Lemma) If a normalized sequent has a single-cut simple
and normalized CF derivation then it has a simple and normalized CF cut-free
derivation.

Proof. The root of the derivation of the given sequent has the form
m1(n) ma(mn)
(S)Tru:AA (S T,u:Ar A
(S T+ A

(Cut)
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where 71 (n) and mo(m) are cut-free simple derivations for the sequents (S) I"
uw: A;A and (S)T,u : A+ A, of sizes n and m respectively. We use the
notation 7(n) to assert that = is a derivation of size n of the sequent in
the conclusion of the rule. The proof proceeds by induction on the measure
(|A], n+m), where |A| is the structural complexity of the cut-formula A, n+m
is the sum of the sizes n and m of the derivations that occurs as premises of
the cut, and the pairs (|A|, m + n) are ordered lexicographically. We split the
various possible forms of such premises as follows: (1) one of the premises is
an instance of (Id) or (SL), (2) one of the premises is an instance of a world
rule, (3) one of the premises is an instance of (M), (4) one of the premises is
an instance of a logical rule that does not introduce the cut-formula, or (5)
both premises are instances of logical rules, both introducing the cut formula.

(1) (Case (Cut) - (Id/SL)) Suppose (Id/SL) occurs in the right premise of
the cut. Since the derivation is simple by assumption, it must have the form
(1.A) below

(YT A* (1d)
™) : ™' (n)

(S)0uiAd (s)tusara W) T (WP
($YI''m A

where the dots stand for a sequence of k£ > 0 applications of the (SL) or
(SR) rules. Hence, I'* has the form I'',¢ : B, and A* has the form ¢ : B, A’.
We must consider two cases: either the occurrence ¢ : B in I'* results from
u : A below in (S)T,u : A~ A, or it does not. In the first case, there is a
sequence of transpositions p such that pu =5 ¢t and pA |s B, and a sequence
of transpositions o such that cv =g t and oC s B, for some v : C' in A
(so A has the form v : C,A”). Therefore we have that o 'pA s C' and
o~ 'pu =g v. Hence, by Lemma 5.8(1), there is the derivation (1.B) above,
and we conclude by (CR) Lemma 5.14. In the second case, we can then build
a cut-free simple proof of (S)T" + A of size equal to one by removing the
premise u : A and its ancestors from every sequent above (S)T',u : A - A.
The case in which the instance of (Id/SL) occurs as the left premise of the cut
is handled symmetrically, also by Lemma 5.8.

(2) (Case Cut - (S—)) We have

7r1(n)
<S’, S'>F|— u: A, A up =g g g ma(m)
(SYTu:AA ()T u: A A

(SYT'r A
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We can now build the derivation
mi(n) ' (m)
(8,8)T,u: A A (8,8 T,u: A A
(S, T+ A u =gu
()T~ A

(5-)

where 7, (m) is obtained from my(m) by (W). By induction hypothesis, there
is a cut-free derivation of (S,S") '+ A, so we conclude by (S—).

(3) (Case Cut - (1) We handle the case in which the conclusion of (W) is
the left premise of the cut, being the right case handled symmetrically. Hence,
we have

m1(n)
(S,ti(uac)x,x#N)Fl—u:A,A(M) 7o (m)
(S Tru:AA (YT u:Ar A
()T~ A
We can now build the derivation
i (n) ' (m)

(S;t=wz)x,z#N)L'ru: A A (S;t=wz)x,z#N)[Lu: Ar A
(St = (vz)x,z#N)T'+ A
(S)T'r A

(M)

where 7)(m) is obtained from my(m) by (W). By induction hypothesis, there
is a cut-free derivation of (S,t = (vz)x,z# N) '+ A, so we conclude by (M).

(4) (Case 4.LR) We consider here the case in which the left premise of the
cut rule is the conclusion of a right logical rule that does not introduce the cut
formula. We consider the general case of a two-premise rule, but the argument
can be replicated for single premise rule like (VR), or (=R), which adds an
hypothesis (e.g., I'1) to the left context. Hence we have,

m1(n) ma(m)
(YT, wu: AN (SYT\Torwu: A Ay Cg m3(k)
—R
(S)T~u:AA (SYTyu: A A

(S)I'- A

where in general the instance of (—R) may also have some assertions Cyg as
premises. Now, by (W) we can build derivations

(k) 5 (k)
(S)T,u: AT+ A, A (S)T,u: ATy A, A,
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hence we can construct the derivations
m1(n) m3(k)
(S)F,Fll—’u,:A,A,Al <S>F,’U,:A,F1I—A,A1
(S)T, I = A A

and
ma(m) 75 (k)

(YT, loru: A A Ay (ST u: ATy A Ay
(S)T,Ta= A, Ay

By induction hypothesis, there are cut-free derivations for the (S)I',I"; +
A, Ay and (S)T, Ty~ A, Ay, Hence, by (—R) we can build a cut-free deriva-
tion of (S) '+ A, since all possibly required assertions C still apply.

(Case 4.LL) The left premise of the cut is the conclusion of a left logical rule
that does not introduce the cut formula. Note that in our proof system all
left rules have at most one premise, although some require testing certain
assertions C' (namely (ML)). Hence we have in general

i (n)
(S, 8 T"+u:A,A Cy L mo(m)
() Tru:AA ()T u: A A

(SYT'r A
Using (W) on 71(n) and m2(m) we can build the derivation

mi(n) ) (m)
(S, VI IMu: AA (S,8)T,u: AT+ A
(3,8, " A

By induction hypothesis, we obtain a cut-free derivation of (S, S") ', " ~ A.
Since Cg g holds, by (—L) we obtain a cut-free derivation of (S)I'+ A,

(Case 4.RR) The right premise of the cut is the conclusion of a right logical
rule that does not introduce the cut formula. Like (Case 4.LL) above.

(Case 4.RL) The right premise of the cut is the conclusion of a left logical rule
that does not introduce the cut formula. Like (Case 4.LR) above.

(5) We now consider all cases where the premises of the cut are conclusions of
(left and right) logical rules, both introducing the cut formula. Then the rule
that occurs in the left (resp. left) premise is a right-rule (resp. left-rule). We
consider the various possible rule pairs, there is one such pair for each logical
connective. We show in detail the most interesting cases.
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(Case of |) We have

i (n) ma(m) m3 (k)
($)Tru': Au: AIB,A (S)T'v+u":B,u: A|IB,A (S)I,x : A,y : B+ A
(S)'-wu: A|B,A (S)I'u: A|Br A
(S)I' = A

where u =g u/|u", and S" = S,u = x|y. By (InZ) with {x<u'} and {7 <+u"}
on 7y we get 7'3(k)
'3 (k)
(S,u=u|u")T,u : A,u" : B A

(note that by the side condition on (|L) x and 9 do not occur in S,T", A).
Since u =g u'|u", by (CS) we get ©"3(k)

7T,I3(k)
(S)T,u' : A,u” : B A

We now build
(YTru': Au: A|IB,A (S)T,u:A|Br A
(YT'u': A A

and
(S)T'+4":B,u: A|B,A (S)T,u:A|Br A

(S)T'u": B, A

By induction hypothesis, these cuts can be eliminated. By (W) from the deriva-
tion of (S)T'+ u' : A, A above, we obtain a derivation of (S)[',u" : B+ u' :
A, A. Now we construct

: ($YT,u" : B : AJA (S)T,u' : A,u” : B A
()T " : B,A (S)T,u" : B A
(SYI''m A

By induction hypothesis, these two cuts can be successively eliminated.
(Case of >) Let

i (n) 2 (m) w3 (k)
(S)Tyx : A2 : BJA ()T bu: A Bwt: AJA (S)T,u:A> B tlu: B A
(S)T~wu:Av>B,A (S)T,u: A>Br A
()T~ A
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where v' =g X |u. By (InZ) with {x<t} on m(n) and Lemma 5.8(1) we get

7r'1(n)

(S)T,t: Avtlu: B,A

since by Lemma 3.10(1) v'{x <t} =g t|u (note that by the side condition on
(>R) x does not occur in S, I, A). We can now build

"+ 1) ra(im)
(S)I'~u:AvB,t: A,A  (S)Iu:A>Bwt: A A
(SYTwt: A A

where 7'(n 4 1) is obtained from the left premise of the original cut by (W).
In a similar way we construct

7' (n+1) w3(k)
(S)Tytlu: Bu:A>B,A (S)T,u:Av B,tlu: B+ A
(SYT,tlu: B A

By induction hypothesis, these two cuts can be eliminated. By (W) on the
first subderivation above we get

(S)Twt: A tlu: B,A
We now build the following derivation
: 7’1 (n)
: (S)Trt: A tlu: B,A (S)T,t: Artlu: B,A
($)T,t|u: Br A (ST + tu: B,A
(S)T+ A

To conclude, we use the induction hypothesis to eliminate the cut on B, and
then the cut on A, like in the cases for A and = above.

(Case of V) We have

i (n) 2 (mn)
(YT~ u: A{zy},A (S)T,u: A{z<p},u:Ve.Ar A
()T~ wu:Vz.A A ()T u:Vz.Ar A
()T~ A

where y does not occur free in u, S, I, A. By (InN) with {z<p} on m(n)

m'1(n)

()T~ wu: A{z<p}, A
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Using (Cut) we can build
m2(n +2) ma(m)
()T, u: A{opy—u: VoA, A (S)T,u: A{ep},u:Ve.Adr A
()T, u: A{zep} e A

where the left premise comes from the left premise of the original cut by
(W). By induction hypothesis, this cut can be eliminated. We now build the
following single-cut derivation

()T~ wu: A{z<p},A (S)T,u: A{z<p}- A
(S)I'- A

and conclude by the induction hypothesis.
(Case of 1) We have

m1(n) Ta(m)
()T v u: A{zphu: Nz A, A (S)T,u: Alzqh,u: NzAr A
($)T+ u: Nz.A, A ($)T,u: Nz A A
()T A

where p#¢ Wz A and q#¢WNz. A, and u =g (vp)u' and u =g (vq)u”. We can
now build the derivation

m1(n) 7' (m +1)
()T~ wu: A{z¢p},u: Nz A/ A (S)T,u: Nz Avu: A{z<p}, A
()T~ u: A{z+p}, A

where the right premise is obtained from the right premise of the initial cut
by (W). Symmetrically, we can build the derivation

7'(n+1) mo ()
()T u: A{z¢—q} —u: Nz A,A (S)Tu: A{zq},u: Nz. A A
(S)T,u: A{z<—q}+ A

where the left premise is obtained from the left premise of the initial cut by
(W). These two cuts can be eliminated by the induction hypothesis. Since
(p<+> qQ)A{z<p} Js A{z<—q} by Lemma 3.20 and (p<> q)u =g u by (Swap
Erase), by Lemma 5.8 there is a derivation of

I'v+u: A{z+q}, A

Then, we build the single-cut derivation

()T w—wu: A{ze—q},A (S)I'u: A{z<q}+ A
(S)T'r A
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and conclude by the induction hypothesis. [

Theorem 5.18 (Cut Elimination) If a sequent has a first-order derivation
in S then it has a derivation in S without any instance of the (Cut) rule.

Proof. Assume that a sequent (S)I' ~ A has a first-order derivation 7 in
the base system S. Without loss of generality, we assume that the sequent
is normalized. If the sequent has a derivation in S, by Lemma 5.9 it has a
simple and normalized S1 derivation #n’. By Proposition 5.15, we conclude
that (S)I' = A has a simple and normalized derivation 7" in CF. Now, by
induction on the number of instances of (Cut) in 7", we can build a cut-free
simple and normalized derivation of the same sequent by iterating Lemma 5.17
for each minimal single-cut subderivation of the derivation 7", thus ending up
with a cut-free CF derivation of the original sequent. By Lemma 5.11, we
conclude that the sequent has a cut-free derivation in S1 and thus alsoin S. m

6 Examples

In this Section we go though a sequence of short examples to show how our
logic is applicable to reasoning about distributed concurrent systems. We are
necessarily brief here, and show only very elementary examples, but most
interesting logical operators are covered.

6.1 Some Simple Spatial Properties

We show a simple derivation of the fact that (A|B) A O entails A, meaning
that if a process satisfies (A|B) A 0 then it satisfies A. The intuition is that
if a process P satisfies both (A|B) and 0, then P is (structurally equivalent
to) the O process, which is the same as 0|0; hence 0 satisfies A (and B). We
conclude that P satisfies A. This derivation illustrates: a property combining
spatial and propositional operators; the use of constraint manipulation; and
the use of one of the world rules, namely, (S|0) corresponding to the ”zero
law” of m-calculus processes: if P|QQ =0 then P = 0.

5.(S,u=x|y,u=0,x =0)I',x : A,y : B—u:A,A (by (Id) since u =g x)
4.(S,u=x|y,u=0)I"x:Ay :Bru:AA (by5, (S|0) since x|y =g 0)
3(S,u=x|y)I,x: A,y : Biu: 0+ u:AA (by 4, (OL))
2.(S)u: (A|B),u:0—u:AA (by 3, (|L))
L(S)T,u: (A|B)AO+u: A A (by 2, (AL))
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Note that the proof is fairly simple, particularly if conducted bottom up. Most
constraints are generated from the goal by using all the applicable left rules,
and the final constraint x = 0 is generated by closing up the constraint set
under deduction, via (S]|0). Finally, (Id) involves a simple equivalence check
in S. It is common for our derivations, when read bottom-up, to have this
mechanical flavor.

As a further interesting example, we prove a sequent for which does not exists
a contraction free-proof in our system.

1.)x :Ar-x:0,x : A,x : 0 (by (Id))
10.()x:=-A,x:0,x : A, x : 0 (by 11 (=R))
9.)-x:24,x:0,0:-24,0:0 (by (OR))
8.()r-x:-A,x:0,x:(AVO0) (by 10 (VR))
7.)-x:2A,x:0,0: (-AVO) (by 9 (VR))
6.()-x:2A4,x:0,x:(AVO)|(-AVO) (by 7,8, (|R), since u = u|0))
5.() —0:4,0:0,x : (AVO0)|(-AVD0) (by (OR))
4.)-0:AV0,x:(AVO0)(-AVDO) (by 5, (VR))
3.)=x:2AVO0,x: (AVO)|(-AVO) (by 6, (VR))
22.)x:(AV0)|(-AV0),x:(AVO)|(=AVO) (by 3.4, (|R), since u = 0|u)
L.O)r+x:(AVO)|(-AVDO) (by 2, (CR))

Indeed, any cut-free proof of () - x : (A V 0)|(—A V 0) must end either
by an application of contraction or by an application of (|R). So, in absence
of contraction, the only possible premises are either () ~ x : (A Vv 0) and
()r-0:(mAV0),or ) 0:(AVO0)and ()~ x : (nAVO0). In either case, by
soundness we can verify that neither () = x : (-AV 0) nor () = x : (AV0)
can be derivable in general.

6.2 Freshness

We show a derivation of the fact that —Mx.A entails Nz.—A. This (and its
converse) is a well-known property of Mx.A [14]; the purpose here is to show
the use of the rules for freshness in a simple case.
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6.(S,y#WNz.A,u = (vy)x) [ u: A{zy} —u: A{z+y}, A
(by (Id) choose y, x fresh

)
5.(S,y#Nz.A,u = (vy)x)'vu: A{zy},u: -A{z+<y}, A (by 6, (- R))
4.(S,y# Nz Aju = (wy)x) ' u: Vz.Aju: =A{z+y}, A (by 5, (MR))
3 (S, y# Nz Aju = (vy)x) '+ u: Nz A ju: Nz.—A A (by 4, (NR))
2.(S,y#Nz.Aju = (vy)x) T u: "Nz Avu: Nz.—A A (by 3, (= L))
L(S)T,u: Nz Avu: Nz.mA A (by 2, (M) y,x not in conclusion)

We start with A{x<«y} for a fresh y, instead of simply with A, so that we can
apply (M) in the last step even when x occurs free in I'; A. It is usually the case
that an application of rules (W L) or (M R) is followed by an application of rule
(), to clean up the constraints. Note, however, that having (M) decoupled
from (ML) and (MIR) allow us to apply, in this case, (MR) twice before applying

(M)

Along similar lines, we can derive interesting properties combining Vz.A with
spatial operators, for example the following one, which is important for de-
riving properties of the hiding quantifier (it takes about eight steps in each
direction, but with a rather more involved set of constraints):

(YT, u: (Nz.A)|(Nz.B) -+ u: Nx.(A|B), A

This derivation uses the world rule (Sv|), which embeds a rather deep lemma
about m-calculus structural congruence; namely, that if (vn)P = Q|R then
there exist P', Q" such that P = P'|P" and (vn)P' = @ and (vn)P" = R.

6.3 FEquivariance

In general terms, we have that an An process P satisfies the formula n® A if
P = (vn)Q, where @ is a process that satisfies A, and n is the name denoted
by n. Then n denotes a name which is hidden, and hence not free, in P.
Therefore, the revelation operator has a useful meaning also in the special
case N® T: the process P satisfies n® T if and only if the name denoted
by nis fresh in P (In Section 3.6 we introduced (©n as an abbreviation for
-n®T). We can show than A A m® T A n® T entails (n« m)A:

3.(z =(vn)x,z = (wvm)y) (nem)z : (nem)A,x : T,y : Tr z: (n>m)A
2.(z=wn)x,z=wm)y)z: A x : T,y : T+ z:(n>mA (by 3, (TL))
LOz: AAMB®TAN®Tr z: (nm)A (by 2, (AL and ®L))
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(Note the use of (Swap Erase) in step 3, proved by (Id), to show (n<m)z = z
w.r.t. the constraint part of the sequent) This property can be interpreted as
saying that, for any process P, if it satisfies A, it also satisfies (n < m)A
for any fresh names m and n. This fact is a consequence of the equivariance
property of the semantics: intuitively, if the name denoted by (say) m occurs
in the formula A but not in the process P, then we would expect the name m
to be irrelevant to the fact that P satisfies A. This means that if we swap in
formula A the name m by any other fresh name n, we would expect that P
would still satisfy it (since a fresh name is as good as any other fresh name).
For example, the following provable sequent

(n#p,m#p)x : n®(pP(M|T) AMBRTANR® T+ x : m®(p(m)|T)

says that if a process is about to send a fresh name on a public channel p, it
can send any other fresh name as well.

6.4 Input

In our logic we have a primitive formula to observe messages, n(m), corre-
sponding to the output operator of the asynchronous w-calculus. We do not
have a corresponding input formula, but it can be expressed from output along
the lines of [20]. The guarantee operator is crucial to this; recall that a process
P satisfies A > B if for any @) that satisfies A, we have that P|Q satisfies B
(this can be read out from (>R)). We say that P satisfies B ”in presence” of
any () that satisfies A. We can take the following definition of input:

z(y).A = Vy.a(y) > 0A

The intention is that a process satisfies the input specification x(y).A if it
performs an input over a given channel z of any name y (with y bound in A),
and then satisfies the property A. The above definition says literally, that an
input process is one that, in presence of any output message y over the given
channel z, at the next step (after input) it behaves according to A.

It is then easy to verify that because of the adjunction between | and b,
input and output interact as expected in m-calculus communication, that is,

z(z)|x(y).A entails QA{y<+—z}:

42.(S,u=x|7) T, x s 2(z) = x : (), u: QA{yez}, A (by (1d))
4.1.(S,u= x|V, x : x(z), x|y : QA{yez} - u: OA{y«z}, A (by (1))
3.(S,u=x|7)D,x s 2(z), 7 : a(z) b OAlyez} - u: OAlyz}, A (by 4.1-2, (5L))
2.(S,u=x|7)D,x : 2(z), 5 : Vy.aly) b OAr u: OA{yez}, A (by 3, (VL))
L(S)T,u s a(2)| (Fy.aly) > 0A) = u s OA{ye—z}, A (by 2, (L))
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So we have that the following sequent is derivable:

(S)T,u:x(2)|x(y). A u: QA{y+z}, A (I/O)
6.5 Hiding

In Part I and Section 3.6 we defined a hiding quantifier: Hz.A2Uz.z ® A
which is related to m-calculus name restriction in an appropriate way; namely,
that if process P satisfies formula A{z<—n}, then (vn)P satisfies Hz.A, where
n is a (fresh) name denoted by n. An interesting use of Hz.A is in specifying
“nonce generators”, that is processes that output freshly generated names on
a given channel. In 7-calculus, a nonce generator can be written simply as
(vn)ne(n), for a given channel ne. A nonce generator over nc can then be
specified by the following formula:

Ae = Hz.ne(x)

We can show that, when a nonce generator interacts with an input, the result
is the acquisition of a private name:

(SYT,u: Ne|ne(y).Av u: QHz. A{y«=z}, A (BI/O)

Before input we have a nonce generator ac separate from the input process.
After one step, we have that the A part has acquired a name z; but noticeably
this z is "hidden” within A{y<z} by the scope of the hiding quantifier. Hence
the A part of the system has acquired, from the nonce generator, a private
name not shared with other parts of the system (at least, not yet).

6.6 Recursive Properties

We show a couple of derivations involving recursive formulas and freshness.
As a first example, consider the following formulas

Writer=v X.(z(y)|X) Reader=vY.(z(y).Y) LiveLock=vZ.0Z

Thus, a process that satisfies Writer is able to send an unbounded number
of messages z(y). Likewise, a process that satisfies Reader has continuously
enabled the capability of consuming the message z(y). We can prove that the
composition of Writer and Reader has a non-terminating computation path:
this fact can be expressed by the sequent

() x : Reader| Writerw x : Livelock

We abbreviate B= z(y)| Writer|z(y). Reader, so that the formula B is the one
step unfolding of the formula Reader| Writer. Let also M be the sequent con-
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text expressing the monotonicity assumptions (see Section 4) for the recursive
formulas Reader and Writer in the example (the proof of M is also rather
mechanical): M= (z(y)| X){X*}, (z(y).Y){Y"}. We can then use a standard
coinductive argument to show the statement:

4.() M, x : Reader|Writer,y : Bw o : { Reader| Writer (by I/0)
3.() M, x : Reader|Writer,o : B9 : {B (by 4, (Unfold))
2.() M, x : Reader|Writerv x : B (by (Unfold), (Id))
1.() M, x : Reader| Writer — x : Livelock (by 2, 3 (vR))
1. () x : Reader| Writer— x : Livelock  (by (Cut), with () +~ M)

As a second example of the use of recursion, extending the one in Section 6.5,
we specify a recursive nonce generator (a process producing an unbounded
number of fresh names) by follows: ua £ vX.Ac|X. As in our last example,
we can then show

X : ‘Uﬁ?\[c|"ll.‘7\[c = X . UNc

This is simple but significant: it means that (without any knowledge of the
m-calculus implementation) two recursive nonce generators running in parallel
behave like a single recursive nonce generator; in particular, the two generators
do not risk generating independently the same name twice.

7 Conclusion

We have presented a sequent calculus that has a direct interpretation in terms
of distributed concurrent behaviors, including notions of resource hiding. We
believe we have obtained a unique combination of, on one hand, good proof-
theoretical structures and properties, and, on the other hand, direct appli-
cability to concurrency. These twin aims have driven us towards a “many
worlds” formulation of modal sequents that has been able to accommodate a
wide range of unusual but strongly motivated logical constructions.
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8 Appendix

We introduce some auxiliary notation, useful for the proofs of the next two
Lemmas. If 7 is a list of distinct name variables and 1 is a list of terms, we
use the notation {Z«1} to denote the substitution that assigns n; to z;, and
the notation {7+ (p+<> q)1} to denote the substitution that assigns (p+> q)n
to x;. We also assume then that no name variable in & occurs in p, q or n.
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Given a name term mand a list of distinct name variables Z, we write S(m, Z)
for the set of all maximal subterms of the name term m that do not contain
occurrences of name variables z in the list £. In a similar way, given a formula
A and a list of distinct (name or propositional variables) #, we write S(A, %)
for the set of all logically free terms in formula A that do not contain occur-
rences of some name or (propositional) variable x in the list Z. More precisely:
S(A, B)2{n| nec Ift(A) and fu(n) N =0} N.B. S(A,0) = Ift(A).

Lemma 8.1 Let p,q, m be name terms such that p,q#¢ S(A, T), where T is
a list of distinct name variables, and 1 is a matching list of name terms (for
Z). Then (p+ q)(M{T+1}) =¢ m{Z«(p+ q)1i}.

Proof. Induction on the structure of the name term m. [

Lemma 8.2 Let p,q be name terms and A a normalized formula such that
D, q#s S(A, T), where @ is a list of distinct variables, and 1 is a matching list

of name and propositional terms. Then (p<+> q)(A{Z+1}) |s A{f(—(p(—;q) n}.

Proof. Induction on the structure of the formula A. The result is in all cases a
direct consequence of the induction hypothesis; in the case of formulas men-
tioning name terms, the result follows from Lemma 8.1. We detail two cases.

(Case of A = m® B) We must have (p< q)(A{Z+1}) |s m ® B’ where
(p < q)(B{Z+n}) Js B and m' =g (p <> q)(m{ZF+n}). Note that we
must have p, q#¢S(m,Z). Therefore, by Lemma 8.1, we conclude nt =g
m{Z+(p+> q)1i}. By induction hypothesis, we conclude (p<> q) (B{z+1}) |
B{#+(p<> q)1i}. Hence (p+> q)(A{Z+1i}) ||s m{Z+(p+> q)ii} ®(B{Z+(p+
q)ri}) = A{Z—(pe )i}

(Case of A = Nz.B) We have (p +» q)A{Z+n} |s Nz.B' where (p <
q)B{Z, 2«1, (p < q)z} Js B'. We can the apply the induction hypothesis
(note that S(Mz.B, %) = S(B,ZU{z}), and conclude (p<>q)B{Z, z<n, (p+
q)z} s B{Z, 2 (p+ q)ni, z}. Hence (p+ q)A{7+1} |s Vz.(B{Z+(p+
qQ)i}) = AHi—(p< q)nij. =

Theorem 3.22 [Soundness| All sequents derivable in S are valid in Ar.

Proof. We show that all inference rules are sound. An inference rule is sound if
the sequent in the conclusion is valid provided all the sequents and assertions
occurring as premises are valid (see Definitions 3.12 and 3.16). Cases of (Id),

(Cut), (FL), (FR), (AL), (AR), (=L) and (=R) are standard.

e (Case of (TL)) Let J be an interpretation for the sequent (S)T',u: A+ A
such that J satisfies S and all of I',u : A. Then J satisfies all of I' and
J(u) € [A]y. Therefore, {[n]s=[m]s}T(u) € {[n]s=[mls}[Als =
[(nem)Als.

Since (m+<+ n)A =g A" and (m+ n)u =5 v/, by Lemma 3.21(1) and
Lemma 3.13(2) we have [(m<n)A] s = [A]7 and {[n]s<[m] s} T (uv) =
J(u"). We conclude J (u') € [A"] 7.

e (Case of (TR)) Similar to (TL).
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(Case of (Sv|)) Let J be an interpretation for the sequent (S)T"+ A in
the conclusion such that 7 satisfies S and J satisfies all of I'. In particular,
we have (vJ(2))J(u) = J(t)|J(v). By Proposition (Part 1)2.13(2) [4],
there are processes P and () such that t = (vJ(x))P, v = (vJ(z))Q, and
J(u) = P|Q. Let J'2T{x—P}HrQ}.

J' satisfies (S,u = x|, (va)x =1, (vr)y =wv). Since x and ¥ do not
occur in I" and A, we have that J' satisfies all of I", hence by validity of the
premises it also satisfies some of A. So J satisfies some of A.

(Case of other (S—) rules). Like with (Sv|) above, soundness is a con-
sequence of the inversion properties of Proposition (Part 1)2.13 [4].

(Case of (OR)) Let J be an interpretation for the sequent (S)I' — A
in the conclusion, and assume that J satisfies S. Hence J(u) = 0, thus
J(u) € [0],-

(Case of (OL)) Let J be an interpretation for (S) '~ A, and assume that
J satisfies all of ', u : 0. Hence J(u) = 0, and J satisfies (S,u = 0). By
validity of the premise, 7 satisfies some of A.

(Case of (|JR)) Let J be an interpretation for the sequent (S)T" ~ A
in the conclusion, and assume that J satisfies S and J satisfies all of T'.
By assumption, J(u) = J(v)|J (t). If J satisfies some of A, we have the
conclusion. Otherwise, by validity of the premises, we must have J(v) €
[A] 7 and J(t) € [B]s. From that, we conclude J(u) € [A|B] 7.

(Case of (|L)) Let J be an interpretation for the sequent in the conclusion,
and assume that J satisfies S and J satisfies all of I';u : A|B. Thus,
there are P and @ such that J(u) = P|Q, P € [A]7 and Q € [B] 7. Let
J'2T{x P}y «Q}: then J' satisfies (S,u = x|7) and J' satisfies all of
I',x : A o : B. To conclude, note that by assumption [J' satisfies some of
A, and that J' agrees with 7 on A.

(Case of (>PR)) Let J be an interpretation for the sequent in the con-
clusion, and assume that J satisfies S and J satisfies all of I'. Pick any
process P € [A] 7. Since x does not occur in the conclusion, the inter-
pretation J7E£T{x<«P}) also satisfies S and all of T',x : A. By assump-
tion, J¥'(v) € [B]sr = [B]s. But J¥(v) = P|J¥(u) = P|J(u). Hence
P|J (u) € [B]7, for all processes P € [A] 7. We conclude J (u) € [A>B].
(Case of (L)) Let J be an interpretation for the sequent in the conclusion,
and assume that J satisfies S and J satisfies all of I',u : A> B. Thus, for
all processes P such that P € [A]s we have that P|J(u) € [B]s. Since
J satisfies all of ', by validity of the left premise either [J satisfies t : A
or J satisfies some of A. In the latter case, we can conclude. Otherwise,
J(t) € [A]7. Then J(t|u) € [B]s, hence J satisfies all of ', t|u : B. By
validity of the right premise, we also conclude that J satisfies some of A.

e (Case of (OR)) and (Case of (OL)) By Lemma 3.13(2).
e (Cases of (RL), (RR), (@L), and (@R)) Like (|R), (|L), (>L) and (>R).
e (Case of (VR)) Let J be an interpretation for the sequent (S)I' + w :

Vz.A, A in the conclusion such that [J satisfies S and J satisfies all of I.
Pick any name n € A and define j”éj{ax—n}; J"is then an interpretation

47



for the sequent (S)T" + u : A, A in the premise. Note that for all names
n, J" satisfies S and J" satisfies all of I', since x does not occur free in
the conclusion of the rule. Hence, by validity of the premise, J" satisfies
some of u : A, A, for all n. Now, suppose there is an interpretation J" that
satisfies some of A. Then also J satisfies some of A since z is not free in
A, and we have the conclusion. Otherwise, we must have J"(u) € [A] 7=
for all names n. But then, J(u) € [Vz.A] .

e (Case of (VL)) Let J be an interpretation for the sequent (S) ', u : Vx.A +
A in the conclusion such that J satisfies S, J satisfies all of I',u : Vz.A.
Hence, we have J(u) € [A]s[zp for all names p, in particular for n =
[m] 7. Hence, we conclude J(u) € [A{z<—m}]s. By validity of the sequent
in the premise, we conclude that J satisfies some of A.

e (Cases of (V’R) and (V2L)) The proof is similar to (VL) and (VR) above.

e (Case of (1)) Let J be an interpretation for the sequent (S)I' + A such
that J satisfies S and J satisfies all of I'. Now, let P = J(u) and pick any
name n ¢ fn(P) such that n # J(y) for all y € fu(IN) and n & supp(J (X)),
for all X € fpu(N).

When then have J(u) = (vn)J (u). Define J'=J {z+n}{x«P}. Hence
J' is an interpretation for the sequent in the premise, where [J' satisfies
(S,u = (vx)x,x# N) and J' satisfies all of I' (since z and x are fresh). By
validity of such sequent, we conclude that [J' satisfies some of A. Since J’
agrees with J on A, we conclude that J satisfies some of A.

e (Case of (MR)) Let J be an interpretation for the sequent (S)I' + u :
Nx.A, A such that J satisfies S and J satisfies all of I'. By validity of the
premise, J satisfies some of u : A{x<—n}, A. If J satisfies some of A the
proof is concluded. Otherwise, J(u) € [A{z<n}]s = [Alswerny,- By
assumption, the assertion u =g (vn)v is valid, hence J(u) = (v J(n))J (v).
So, [N]s & fn(J(u)). Moreover, since n#¢Wz. A, by Lemma 3.21(2) we
have [n]s & fn (Nx.A). Since J (u) € [A] 7 ry,, J(u) € [N2.A],.

e (Case of (ML)) Let J be an interpretation for the sequent (S)I',u :
Nxz.A v A such that J satisfies S and J satisfies all of ', u : z.A. In par-
ticular, we have J (u) € [A] s(zen for some n & fn(J (u))Ufn’(Nz.A). Thus,
by Theorem 2.3(3), for all names p € A such that p & fn(J(uv)) U fn"(VNz.A)
we have J(u) € [A]sjwep). Like in the case above for (MR), we can verify
that [n]s € fn(J(u)) U fn”(Nz.A), so that n denotes a possible freshness
witness. Hence, we have J(u) € [A]sweiny,] = [A{r<n}]s. Since the
premise of the rule is valid by assumption, J satisfies some of A. [

Lemma 5.3 (Basic) The size-preserving proof principles (CS), (Ren), (W),
(InZ) and (InN) are admissible.

Proof. (CS) By induction on the structure of derivations, using Lemma 3.10(2).
(Ren) and («) By simultaneous induction on the structure of of derivations.

(W) By induction on the structure of derivations, using Lemma 3.10(1) to
show that provability of constraint premises is preserved.
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(InZ) For clarity, we abbreviate the substitution {z<-u} by o. Proof by in-
duction on the structure of derivations, using Lemma 3.10(3) to show that
u =g v implies o(u) =4(s) o(v) in all rule instances with assertions v =g v as
premises, and likewise for premises of the form u —¢ v. The most interesting
cases are the ones which introduce process eigenvariables, e.g.,

e (Case of (|L)) (S)T,u: A|B+ A is concluded from (S,u = x'|o")T', x":
A,ov": B+ A. By (Ren), there is a derivation of (S,u = x"|y")I',x" :
A" + B+ A, where x” and 7" are distinct from x and do not be-
long to afv(u). By induction hypothesis, we have (o(S),u = x"|o") [, x" :
o(A),y" :0(B)+ o(A). We then conclude by (|L).

(InN) For clarity, we abbreviate the substitution {z<—m} by o. The proof
proceeds by induction on the structure of derivations and case analysis on the
last rule used, using Lemma 3.10(3) to show that all assertions that occur
as premises of rule instances in the derivation are preserved. We present a
detailed proof for one of the spatial rules, the (1) and (TL) rules, and all
the quantifier rules. In each case, note that the structure of the derivation is
preserved by the transformation.

e (Case of (|R)) (S)I'+u: A|B, A is concluded from (S)T'+ ¢ : A, A and
(SYT'+~ v : B,A and u =g t|v. By induction hypothesis, we have (o(5)) T" +
o(t) : 0(A),0(A) and (o(5))T + o(v) : 0(B),0(A). By Lemma 3.10, we
have o(u) =,(sy o(t)|o(v). We conclude by (|R).

e (Case of (TL)) Suppose the instance of (TL) is not simple. Then (S) I, u :
A A is obtained by (TL) from (S) ', u': A"+ A, where (n<>p)A =g A’
and (n < p)u =g u'. By induction hypothesis, there is a derivation of
(c(SNHT, o) : 0(A") + o(A). By Lemma 3.19(1), we have o(A") =4
o((n« p)A) = (c(n) <> o(p))o(A). By Lemma 3.10, we have o(u') =,s)
o((n<>p)u) = (c(n)<>o(p))o(u). We then obtain the conclusion by (TL).
In the case where the instance of (TL) is simple, we can along similar lines
obtain a derivation of size equal to one for (o(S)) o(I"),0(u) : 0(A) + o(A)
by instantiating every sequent in the given derivation with o.

e (Case of (1)) (S) '+ Aisobtained by (M) from (S,u = (vz)x,2# N) '+
A, where z and x do not occur free in the conclusion and u, and N is a
finite set of names not containing z.

By («) we may assume that z # = and z ¢ afo(m). By induction hy-
pothesis, we have (0(5),0(u) = (vz)x,z#0(N))o([') — o(A). Let M =
afv(o(N)). By (W), (o(S),0(u) = (v2)x,z#c(N),z# M)o([) + o(A).
Write S’ (0(S), o(u) = (v2)x, 2z # M). Since M = afv(o(N)) and z #¢ M,
we can verify that z #¢ o(N).

By (CS) we have (o(S5),0(u) = (vz)x,z# M) o(I') + o(A). Now, note
that z does not occur free in o(S), in o(I'), uw or M, or in o(A), because
it does not occur free in m, nor in the conclusion of the original sequent.
Hence, by (M), we obtain the conclusion (o(S)) o(T') + o(A).

e (Case of (VR)) The sequent (S)T' + u : Vz.A, A is concluded from the
sequent (S)I'+ u: A{z+y}, A, where y does not occur free in the conclu-
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sion. By (Ren) we can assume that y does not occur (free or bound) neither
in the initially given sequent nor in m. By induction hypothesis, we have
(0(9)o(l) v o(v) : o(A{z<y}),0(A). We have o{z¢z}(A){z+y} =,
o(A{z¢=y}). By (@), (0(5))o(l) = o(v) : o{z2}(A){z¢y},0(A). By
(VR) we conclude (o(5))o(T') + o(v) : 0(Vz.A),0(A), since o(Vz.A) =
Vz.0(A{z¢2}).

e (Case of (VIR)) We have the sequent (S)I' + u : Nz.A, A, concluded
by (M) from a derivation of (S)T' v~ u : A{z¢<—n}, A, where u =5 (vn)v
and n#g¢ Wz A. By induction hypothesis, we have (o(S5))o(') + o(u) :
o(A{z+-n}),0(A). By Lemma 3.10(3), we have o(u) =4(s) (vo(n))o(v).

Note that o(Mz.A) =, Ny.o(A{z+y}) for some y & afo(m,z) U fu(A).
Since Ifu(Nz.A) = Ifu(Ny.A{z<y}), we also have n#¢WNy.A{z<y}. Note
that Ift(c(Nz.A)) = {o(n) | n€ Ift(Nz.A)}.

So, by Lemma 3.10(3), we conclude o(n) #,5), o(WNy.A{2¢<-y}). By (UR)
and («), we can build a derivation (o(S))o(I') + o(u) : o(Nz.A),0(A),
since o(A{z+y}){yo(n)} =, o(A{z<n}).

e (Case of (VL)) We have a derivation of (S)I',u : Vz.A ~ A concluded
from a derivation of (S)I',u : A{z<—n} + A. By induction hypothesis, we
have (0(5))o(I'),o(u) : o(A{z<—n}) ~ o(A). By («) and (VL), we con-
clude (o(S)) o(T),0(u) : 0(V2.A) = o(A), since we have that o(Vz.4) =,
Vy.o(A{z¢—y}) for some y € afo(m,xz) U fo(A) and we can verify that
o(A{zy}){yo(n)} =4 o(A{z¢-n}).

e (Case of (VL)) Similar to (MR). ]

Lemma 5.5 Every sequent of the form (S)T,u : Aw u : A, A, where A is
not atomic, has a cut- and contraction-free derivation.

Proof. By induction on the structure of the formula A we show that this
sequent has a derivation in the stated conditions: in the base case the sequent
is itself an instance of (Id). We show a few cases:

e (Case of A = A;|A,) By induction hypothesis, there are derivations of
(SSu=x|7)T,x : A, Ay x : A, A and (S;u=x|o)T,x : Ay, o
Ay — o ¢ Ay, AL By (|JR) we get (S,u=x|o),x : B,y : By v u :
A;|As, A. We then conclude by (|L).

e (Case of A = A; > Ay) By induction hypothesis, there are derivations of
(YTyx :Are-x Ay Aand (S)T) x - Ay x|u: As v x|u: Ay, AL By (bL)
we get (S)T,u: A x : Ay + x|u: Ay, A. We conclude by (>R).

e (Case of A =Wz.B) Let N be the set of all name and propositional vari-
ables occurring free in the given sequent. Let (S') = (S,u = (vy)x,y# N),
where x and y are also chosen not free in the sequents under consideration.
By induction hypothesis, (S")I',u : B{z<y} + v : B{z<y}A. Note that
y#g WNz.B and u =g (ry)x. We conclude by (UL), (MR), and (W). n

Lemma 8.3 (Basic Simplification) Assume (n<+ m)u =g v’ and (n <+
m)A s A", T s " and A s A’. Then we have:
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(1) If = (YT~ wu: A A in S then by (S)T" o' : A/, A" in S1.
(2) If =1 (SYT,u: A A in S then by (S)TV, v’ : A+ A’ in S1.
Proof. We prove (1), the proof for (2) is similar. The proof rests on the following
observation: if there is a derivation of (S)I' + u : A, A built just from (Id),
(TL) and (TR), then there are formulas B and B’ such that I' =I',,¢ : B and
w:AA=t:B A, and pB =5 0B’ and pt =g ot', hence 0 'pB =5 B'. =

Lemma 5.8 (Simplification) Assume (n< m)u =g v’ and (n+ M)A |s
A, T s IV and A |l A'. Then the following size-preserving proof principles
are admissible:

(1) If -, (S)T+wu: A, A in S then b, (S)T"+u' : A', A" in S1.

(2) If =, (S)T,u: A A in S then b, (S)T",u': A"+ A’ in S1.

The resulting derivations are simple and normalized. Moreover, if the original
deriwations are cut-free then the resulting ones are also cut-free.

Proof. The proof proceeds by mutual induction on the size of the derivations
(D) Fp ()T~ wu: AJA and (2) F, ()T, u : A A. We show the proof for
(1), the case of (2) is handled in a similar way.

(Case of (1)). Assume F, (S)T' — A u : A. Possible ways of deriving this
sequent are: (1) the last rule is a logical rule acting on a formula in A or T,
(2) the last rule is a world rule acting on S or (M), or (3) the last rule is (Id),
Cut) or a logical right rule acting on the principal formula u : A.

(
(Subcase 1) The result follows from the inductive hypothesis, possibly using
(Ren) in the (VR) case.

(Subcase 2) If the last rule is some world (S—) rule, the result is an immediate
consequence of the induction hypothesis. If the last rule is (M), the sequent
()T +~ u : A, A is concluded from F,_; (S,v = (va)x, 2 #N)[ +~ u: A A.
By (Ren), there is a derivation -, (S,v = (vy)x,y# N)I'+t: A, A, where
y is chosen not free neither in the original sequent, nor in I, A", u' : A’. By
induction hypothesis, we conclude -, 1 (S,v = (vy)x,y#N) [V u': A/ A"
By (M), (S)I"+ v/ : A", A" is obtained. We now address (Subcase 3).

e (Case of (Id)) By Lemma 8.3(1).

e (Case of (Cut)) We have (S)T'+ A,u: A concluded from t, ; (S)T +
Aju:Awv:Bandb, ; (S)I'v: Br Aju: A. Let B s B'. By induction
hypothesis, we have -, ; (S)I" + A" v’ : A u : B and F,_; (S)T",u :
B'+ A’ Ju': A'. We then conclude by (Cut).

e (Case of (CR)) We have (S)I' = A, u : A concluded from -, 1 (S)T +
A u: Aju: A. By the induction hypothesis, we have -, 1 (S)I"+ A’ v/ :
A'yu o A", where A |Jg A”. Again by induction hypothesis, we conclude
Foo1 (S)YT = Au! 2 A'Ju’ 0 A since A” | A'. We then conclude by (CR).

e (Case of (TR)) We consider first the case where the application of (TR) is
not simple. We have (S) '+ u : A, A concluded from -, (S)I'+~ v : B, A,
where B =g (p<> q@)A and v =5 (p <> qQ)u. Hence (p<+> q)B =5 A and
(p+> q)v =5 u. By Lemma 3.19(2) there is B’ such that (p<»q)B s B’ and
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A s B'. By induction hypothesis, we conclude F, 1 (S)T" + u : B’ A’.
Since (n <> m)A s A’ we also have (n <+ m)B’ |s A’. Again by the
induction hypothesis, we conclude , ; (S)T" + o' : A’,A’. Otherwise,
suppose the application of (TR) is simple. Then, we have F; (S)T' + u :
A, A. By Lemma 8.3(1), we conclude F; (S)I"+u': A"} A

(Case of (AR)) We have A = BAC and (S)I'+~ A, u : A concluded from
Foo1 (YT Aju: Band b, (S)T'+ Aju: C. We have A’ = B' A C'
with (n< m)B s B’ and (n< m) |s C'. By induction hypothesis, we
have F,_ 1 (S)T" ~ A" v’ : B" and -,y (S)I" + A" u' : C'. By (AR), we
conclude k-, (YT~ A'ju': A"

(Case of (=R)) Wehave A = B = C and (S) '+~ A, u : A concluded from
Fno1 (S)Tu: B Aju: C. We have A’ = B' = C' with (n<>m)B |s B’
and (n<m) |s C'. By induction hypothesis, we have -, ; (S) ", u': B'+
A',u : C. By induction hypothesis again, -, | (S)I",u' : B"'+ A’/ : C".
By (=R), we conclude -, (S)T"+~ A" v/ : A

(Case of (JR)) We have A = B|C and (S)I' ~ A, u : A concluded from
(S)T+A,t: Band (S)I'+ A v : C, where t|v =g u. We have A’ = B'|C’
with (n<>m)B |s B’ and (n<>m) |s C' and v’ =g (n<> m)u =5 (n<+
m)t|(n<> m)v. By induction hypothesis, we have (S) [' ~ A', (ne>m)t : B’
and (S) "+ A" (n<>m)v : C". By (|R), we conclude -, (S) "+ A" u': A"
(Case of (>R)) We have A = B> C and (S)I' — A,u : A concluded from
Foo1 (S)T,x : B Ajv: C and v =g x|u, where x does not occur in the
conclusion. We have A" = B'>C" with (n<>m)B |ls B’ and (n<>m) {5 C".
By induction hypothesis (twice) we have , ;1 (S)I',(n< m)x : B’ +
Al (nem): C.

By (InZ) with {x<+(n<> m)x} and induction hypothesis, we have -, ;
(S)T",x : B+ A, x|v : C', since ((n+ mv){x«(nem)x} =5 (n+
m)x |u){x<+(n<m)x} =g x|u/, because v’ =g (n<+> m)u by assumption.
By (>R), we conclude t, (S) "+ A" ju': A
(Case of (OR)) We have A = OB and (S)I' ~ Aju : A concluded from
Fno1 ()T~ Ajv: B and t —5 v. We have A" = O B' where (n<>m)B |¢
B'. By induction hypothesis, F,_; (S)I"+ A’ ' : B'. By (OR), we conclude
Fo (SYT = Al u' 0 A’ since u = (N m)t —5 (N« m)v by (Swap Red).
(Case of (®R)) We have A = q® B and (S)I' ~ A ju : A concluded
from F,; (S)T' +~ A,v: B and t =g (vq)v. We have A" = ¢ ® B’ with
d =s (n+> m)q and (n< m)B s B'. By induction hypothesis, -, ;
(S)T"+ A, (n<>m)v : B'. By (® R), we conclude -, (S)T"+ A" u' : A,
since (vq)(nem)v =g u' =5 (N m)u.

e (Case of (@R)) Similar to (®R).

e (Case of (MR)) We have A = Vz.B and (S)T + u : A, A concluded
from F,_y (S)T ~ u : B{z<p}, A where p#¢WNx.B, and u =g (vp)v.
By () we can assume that z is not free in n,m or S, so that A’ =
Nx.B' with (n+ m)B{z+(n<+ m)z} |s B'. Let (n+ m)B{z+p} s
B", by induction hypothesis we conclude , ;1 (S)I" +~ o' : B" A’. We
have (n < m)B{z+(n < m)z}{z<(n+ m)p} =5 (n < m)B{z<p}.
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By Lemma 3.19(1), we have (n <> m)B{z<p} s B'{z<(n < m)p}.
Hence B'{z+(n<+ m)p} =s B", and actually B” |ls B'{x+(n<+ m)p},
since both formulas are normalized. By induction hypothesis again, we
have F, 1 (S)T" ~ u' : B'{z<(n < m)p},A’. By (MR), we conclude
Fo (S)T" + A'Ju’ : A’ since by Lemma 3.10(3) (n <> m)p#g¢ A', and
u =g (Ne>m)u =5 (v(ns m)p)(ne mw.

e (Case of (VR)) We have A = Vo.B and (S)I" + u : A, A concluded
from -, 1 (S)T + u : B{z<y}, A, where y is not free in the conclusion,
and by (Ren) we can also assume that y is not free in IV, A’, A" /. By
(o) we can assume that x does not occur in n,m, S, so that A" = Vz.B'
where (n < m)B{z<(n<+ m)z} s B’. By Lemma 3.19(1), we obtain
(ne m)B{z+(n+ m)y} s B'{z+y}. By (InN) with {y+(n+ m)y}
we have F, 1 (S)['+ u : B{z<(n< m)y}, A. Since (n<> m)B{z+(n<+
m)y} {s B'{z<y}, by induction hypothesis, we have -, | (S)I" ~ ' :
B'{z<y}, A’". By (VR) we conclude -, (S)T"+ o' : A", A", ]

Lemma 5.13 (Inversion)

Proof. By induction on the size of the derivation of the given sequents and
case analysis in the last rule used. We present a detailed argument for (7), the
other cases are handled in a similar way.

If =, (S)Thu: A|lBvw A then b, (S;u=x|o)T,x : A,y : Bv A, for any
X, not free in the first sequent.

We consider three subcases: (a) If the last step is an application of (|L) to the
distinguished formula u : A|B, the proof is concluded.

(b) The last step in an application of (SL) to the distinguished formula v : A|B.
Hence we have -, 1 (S)T,u' : A'|B' v A, where (n<+> m)A |s A'|B’ and
u' =g (n<> m)u. By induction hypothesis, we have -, | (S,u' =x|7r) T, x :
Ay : B'+ A. By (InZ) we have -, ; (S,u' = (nm)x|(nem)y) T (ne
m)x : A, (n< m)y : B+ A. By Lemma 5.8(2) (twice), we have -,
(S,u' = (nem)x|(nem)y)T,x : A,y @ B A, since (n+ m)B' |5 B,
(n»m)A" s A and all formulas in I and A are normalized. By (W) and
(CS), we conclude t,_; (S,u=x|7)[,x : A, : B+ A.

(c) Otherwise, the sequent (S)T',u : A|B + Ais concluded from k =1 or k = 2
premises of the form (S;)';,u : A|Bvw A;, for i =1,... ,k and possibly some
premises of the form S I ¢, by an application of some inference rule (% ) acting
either on a principal formula in I or A, or in (S). By induction hypothesis,
we conclude b, 1 (S;,u=x|7)T;,x : Ay : B A; fori=1,... k, where
x and o can be chosen fresh with respect to S, S;, I', A, I'; and A; (so that
any eigenvariable condition required for applying (&) still holds). By (% ), we
conclude -, (S;u=x|7)T,u: Aju: B A. ]

Lemma 5.14 (Contraction Elimination) In the system CF the following
size-preserving proof principles are admissible, provided the sequents shown
are normalized
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Fo ()T —u:Au: A A Fo ()T u:Aju: A A
Fn ()T u: A A Fo ()T u: A A
The resulting derivations are normalized. Moreover, if the original derivations
are cut-free, so are the resulting derivations; if the original derivations are
stmple, so are the resulting derivations.

(CR) (CL)

Proof. The principles (CL) and (CR) are proved by mutual induction on the
size of the respective derivations. If the last rule of the derivation is a world
(S—) rule, (Cut), or a logical rule other than (Id), applying to some formula
in [ or A, the result follows directly by the induction hypothesis. If last rule
is (Id), identifying atomic formulas in T or A, then (S) '~ A is an instance
of (Id). The conclusion can then be obtained by adding the required formulas
to the left and right context of this sequent. Otherwise, we consider the case
of each possible rule acting on one of the distinguished occurrences of u : A.
We consider a few cases for (CR), (CL) is handled in a similar way.

(Case of (Id)) Immediate, for just one of the u : A can be relevant to (Id).

(Case of (SR) If this occurrence of (SR) is simple, then just one of the

occurrences of u : A is used in the (Id) axiom below it, so we immediately

conclude F; (S)T' + u : A, A. Otherwise, we have that (S)I' ~ u : A, u :

A, A results from F,_; (S)I'+ o' : A" u: A, A where (ne>m)u =g v’ and

(nem)A s A'. By Lemma 5.8(1), we have b,y (S) '/ A'Ju' : A") AL

By induction hypothesis, we conclude -, 1 (S)T'+ ' : A, A. By (SR) we

conclude -, (S)T'+u: A, A.

e (Case of (|RK)) We have A = B|C and (S)T'+ u: A,u: A, A concluded
from b, ; (S)T'+v:Bu:Au:AAandb,_; (S)T'+t:Ciu: Au:
A, A and v|t =g u. By induction hypothesis, we have -, ; (S)T'+ v : B, u:
A/Aand F, 1 (S)T'+—1t:Cyu: A, A. We conclude by (|RK).

e (Case of (PR)) We have A = B C and k-, ()T~ u : Aju : A/A
concluded from F, ; ()T, x : B+ v : Ciu : A;A and v =g x|u. By
Lemma 5.13(6), we have -,y (S)I',x : B,y : B+ v : C,|u: C,A for
some fresh 9. By (InZ) we get F,_1 (S)T,x : B,x : B uv:C,x|u: C,A.
By Lemma 5.8(1) with the identity permutation, we conclude -,y (S) T, x :
B, x :Bruv:C,v:C,A, since v =g x |u. By induction hypothesis, we get
Fno1 (S)T,x : B v : C,A. The conclusion follows by (>R).

e (Case of (VR)) We have A = Vz.B and (S)I' + u : Aju : A, A con-
cluded from b, ; (S)T' v~ u : B{z<y},u : A, A, where y is not free in
the conclusion. By Lemma 5.13(5), we have -,y (S)I'+ u : B{az+y},u:
B{z<+=z}, A, where z is not free in the conclusion. By (InN') with {z+y},
we have F, | ()T v~ u : B{z<y},u : B{z+y},A. By the induction
hypothesis, we get -, 1 (S) '+ u : B{z<y}, A and we conclude by (VR).

e (Case of (MRK)) We have A = Nz.B and (S)T' v+ u : A,ju : A, A con-

cluded from t,_; (S)T' + w : B{z<p},u: Aju: A, A where p#4Wz.B,

and t =g (vp)v. By induction hypothesis, -, 1 (S)T' ~ u : B{z+p}, u :

A, A, we then conclude by (MRK). [
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